Z-80
MICROCOMPUTER
DESIGN PROJECTS

WLLIAV BARDEN. R

Z-80 Microcomputer
Design Projects

by
William Barden, Jr.

Howard W. Sams & Co., Inc.

4300 WEST 62ND ST. INDIANAPOLIS, INDIANA 46268 USA

Copyright © 1980 by William Barden, Jr.

FIRST EDITION
SECOND PRINTING-1980

All rights reserved. No part of this book shall be

reproduced, stored in a retrieval system, or transmitted

by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher.
No patent liability is assumed with respect to the use

of the information contained herein. While every precaution
has been taken in the preparation of this book, the

publisher assumes no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting

from the use of the information contained herein,

International Standard Book Number: 0-672-21682-5
Library of Congress Catalog Card Number: 80-50046

Printed in the United States of America.

Preface

This book is dedicated to one proposition—that it is relatively easy to use to-
day’s microprocessors, “computers on a chip,” to perform a variety of sophis-
ticated tasks. The digital computer has made the transition from paraphernalia
that required government funding to build and use, to a circuit component that
is used in hundreds of applications. Microprocessor chips are “designed into”
mixers, radio tuners, microwave ovens, and many other devices.

The microprocessor has become a standard engineering building block, just
as vacuum tubes and flip-flops were standard components several years ago. The
appeal of a microprocessor over discrete logic is that a microprocessor does not
have to be dedicated to performing a single defined task. Because a micropro-
cessor is a computer, by its very nature it is a general-purpose device. The same
circuitry may be programmed to perform any number of functions. Rather than
designing a dozen separate circuits to perform a dozen separate functions, the
computer program may simply be changed to perform each function.

This book, Z-80 Microcomputer Design Projects, may be used by the elec-
tronics enthusiast who has a background in electronics other than micropro-
cessors as a training course in microprocessor fundamentals. It may be used by
the interested nontechnician to let him or her see how easy it really is to con-
struct a complete microcomputer. It may be used by the hobbyist who wants
to use a microcomputer primarily for the application or end result.

This book provides a step-by-step guide in building a complete microcom-
puter, the EZ-80, and for implementing a number of different applications.
Although some kit-building experience may be of help, every attempt has been
made to provide a trouble-free guide to construction even for the neophyte.
The applications range from a music synthesizer that will play one-voice musi-
cal scores with special effects, to a Morse code generator that generates code
for practice or transmission, to a telephone dialer, to a timer that times external
events over 100 days. Each application is fully documented in detail. For those
readers who are interested in implementing their own unique applications, this
book provides the ground work in programming methods so that they may create
their own programmed “applications packages” using the input and output lines
of the microcomputer to talk to the external world.

The EZ-80 Microcomputer is built around the popular Z-80 microprocessor
chip. The Z-80 microprocessor is a complete computer on a chip. It has a reper-
toire of hundreds of instructions and operates at speeds of up to hundreds of
thousands of operations per second.

In addition to the Z-80, about 12 other semiconductor devices are used. Some
of these are memory, others enable the Z-80 to interface to the outside world,
and others perform clocking and control functions. The complete set of parts
to build the EZ-80 may be purchased for about $50—inexpensive indeed for the
processing power that is available. Two methods of construction are possible.

PREFACE

The microcomputer may be wire-wrapped using simple techniques and tools.
Alternatively, plans are provided for a printed-circuit board construction for
those readers who have the wherewithal to produce printed circuits. Total con-
struction time using wire-wrapping is approximately 20 hours.

The book is divided into three sections. Section 1 covers the hardware and
software basics of the Z-80 microprocessor. Since the microcomputer is built
around the Z-80, discussion of the hardware signals and operation of the micro-
processor are essential to a complete understanding of the microcomputer.
Similarly, the programs presented in the book all use the built-in instruction set
of the Z-80, and a discussion of basic Z-80 instructions is helpful in understand-
ing operation of the microcomputer programs for the application.

Section 2 describes the EZ-80 microcomputer built from the Z-80. The relation-
ship of the Z-80 to other system components, such as memory, peripheral inter-
face, and clock, is explored. Complete construction details on the EZ-80 are pre-
sented in this section. If you choose to program or “burn in” an applications
program in the EPROM (ZErasable Programmable Read-Only Memory) chip,
you may do so by constructing the simple auxiliary EPROM programmer de-
scribed in this section (or you may choose one of several other alternatives). A
diagnostic program and step-by-step troubleshooting procedures are also pro-
vided in this section. These help in checkout of the EZ-80 after construction has
been completed, and verify that the EZ-80 is working properly.

Section 3 describes the applications that may be implemented with the EZ-80.
A Morse Code Generator is described that will generate random code characters
for code practice, and a Morse Code Sender that will send predefined messages
is also discussed. Speed may be varied as desired. A Music Synthesizer is de-
fined that will play prerecorded or user-defined scores. The envelope of the
notes may be shaped to create special effects. A Timer with presets is described
that enables six outputs with programmable times from seconds to days. Two
security applications, a Burglar Alarm and Combination Lock, are described.
The Burglar Alarm monitors five inputs for switch closures and provides an audio
alarm and visual report. The Combination Lock provides a virtually unbreakable
combination that may be used to open doors or for control functions. A Fre-
quency Counter/Tachometer application describes a general counter that counts
at rates of less than one event per second to tens of thousands of events per sec-
ond. A Telephone Dialer application provides automatic dialing of a number
of commonly used telephone numbers. A Microcomputer Educator program per-
mits the user to construct his or her own assembly-language program to learn
the basics of this type of programming.

All of the applications presented in Section 3 are described in detail with
complete applications programs that are ready to be used. Section 3 also describes
how the user may implement other EZ-80 control projects, perform distributed
processing and implement intelligent controllers using the EZ-80. A complete
set of appendices provides information on binary and hexadecimal number
systems and the Z-80 instruction set.

The projects in this book are really a starting point in two senses. Firstly, they
will convince the reader that it is possible to use a microprocessor in place of a
great deal of other electronic circuitry and to have as a result a much more
adaptable piece of equipment. Secondly, they may give the reader the initiative
to implement his or her own projects, using the EZ-80 as a high-speed computer
communicating with the external world.

Special thanks are due John Albu for his pc board artwork.

WILLIAM BARDEN,]R.

To Barb, John, Jon, and Danny

Contents

Section 1

EZ-80 Theory

CHAPTER 1
EZ-80 CoMmpPONENT PARTS 11
EZ-80 CPU—-EZ-80 Memory—Blnary Notatlon—EPROM Memory—-RAM Memory—
EZ-80 Input/Output—EZ-80 Software—EZ-80 Logic Diagram
CHAPTER 2
Tue CPU Skction . 19
General Characteristics of the Z-SO—Archltecture of the Z- 80—Z-80 Input and Out—
put Signals
CHAPTER 3
28

Tae MEMORY SECTION
EZ-80 Memory Map—Addressmg Memory—Data To and F'rom Memory—Z 80 Read

and Write Cycles—Z-80 Instruction Execution—The 6810 Versus the 2758—Program-
ming the 2758

CHAPTER 4

34

THE 1/O SecTION . .
The 8255 PPI-The LED Dlsplay—The Keyboard—Output Lmes—Input Lmes

CHAPTER 5

41

Z-80 AsseMBLY LANGUAGE INSTRUCTION TYPES
Where Do We Begin?—Load Instrucnons—Anthmetxc—Loglcal Instructlons—]umps

Calls, and Returns—Stack Operations—Rotates and Shifts—Bit Set, Reset, and Test—
1/0 Operations—Miscellaneous Instructions

CHAPTER 6

Z-80 AssEMBLY LLANGUAGE—ADDRESSING AND FORMATS 50
Addressing Modes of the Z-80—Implied Addressing—Immediate Addressmg—Regxster

CONTENTS

Addressing—Register Indirect Addressing—Extended Addressing—Page 0 Addressing
—Relative Addressing—Indexed Addressing—Bit Addressing—Using the Z-80 Instruc-
tion Set—Problem—Assembling the Program

Section 2

EZ-80 Construction

CHAPTER 7

ConsTrUCTION OF THE EZ-80 61
Wire-Wrapping the Microcomputer Board—ere Wrap Too]s—ere~Wrap Mount-
ing the Sockets and Parts—Wire-Wrap: Wrapping the Sockets—Wire-Wrap: Check-
ing the Connections—Wire-Wrap: Final Connections—Wiring the Microcomputer
PC Board—Power Supply Construction—Power Supply/Microcomputer Board Test-
ing—Keyboard Construction—LED Display—EZ-80 Panel—Alternatives to Flashy
Panels!—The EZ-80 Applications Area

CHAPTER 8

ProcramMMING THE EPROMs . . . 80
The 2758 Versus the 2716—Distributor Programmmg of EPROMS—Computer Store
Programming of EPROMs—Programming the EPROMs on a Personal Computer
System—A Simple EPROM Programmer—Description of the EZ-80 Programmer—
Construction of the EZ-80 Programmer—Programmer Checkout—Operating the Pro-
grammer—Erasing the EPROMs

CHAPTER 9

A DiacNostic PROGRAM FOR THE EZ-80 91

EZ-80 Diagnostic Programming—“Bringing Up” the EZ 80 Prellmmary Checks—
“Bringing Up” The EZ-80: Diagnostic Operation—Catastrophe!—Initialization—LED
Digit Sequencing—Test 1: RAM Memory—Test 2: RAM Memory—NMI Interrupt
Processing—Test 3: Clock Frequency/NMI—Test 4: Output Lines—Test 5: Input
Lines—Test 6: Keyboard Scan—The EZ-80 Diagnostic

Section 3

EZ-80 Projects

CHAPTER 10

EZ-80 APPLICATIONS PROGRAMS 109
Memory Mapping—Common Area Program—Subroutme Vectors—Imtlahzahon Sub-
routine—Common Variables—NMI Interrupt Handler—Keyboard Subroutines— Con-
version Subroutines—Delay Subroutine—Blink Subroutine—Branch Subroutine—
General Use of Subroutines—Structure of the Applications Programs—Relocation of

Programs—Using Several Applications Programs at Once—Applications Hardware
Devices

CHAPTER 11

MicrocompuTtER EpucaTor . . . el%°s
Operating Instructions—Theory of Operahon

CONTENTS

CHAPTER 12

CoMBINATION Lock
Operating Instructlons—Apphcatlons Hardware—Theory of Operatlon

CHAPTER 13

BURGLAR ALARM
Operating Instructlons—-Apphcatlons Hardware—Theory of Operatlon

CHAPTER 14

Morse CopE GENERATOR
Operating Instructions—Applications Hardware—Theory of Operatlon

CHAPTER 15

Morse CODE SENDER .
Operating Instruchons—Apphcatlons Hardware—Theory of Operatlon

CHAPTER 16

TeELEPHONE DIALER
Operating Instructlons—Apphcatlons Hardware—Theory of Operatlon

CHAPTER 17

FreQueENcy CoUNTER/TACHOMETER
Operating Instructions—Applications Hardware—Theory of Operatlon

CHAPTER 18

TmMER
Operating Instructlons—Apphcahons Hardware—Theory of Operatlon

CHAPTER 19

MusiC SYNTHESIZER
Operating Instructxons—Apphcahons Hardware—Theory of Operahon

CHAPTER 20

BLuE Sky PROJECTS

Other EZ-80 Control Apphcatlons—Dlstnbuted Processmg—Intelhgent Controller

Applications

. 131

. 135

. 139

. 146

. 152

. 158

. 163

. 1689

182

CONTENTS

BINARY OPERATIONS

HexapeciMAL OPERATIONS

Appendices
APPENDIX A

APPENDIX B

APPENDIX C

ConversioN TasLes FoR DEciMAL 0-255

Z-80 INSTRUCTION SET

Z-80 OpeRraTION CoODE LISTINGS .

EZ-80 PC Boarp Layours

INDEX

APPENDIX D

APPENDIX E

APPENDIX F

. 189

. 191

. 193

. 195

. 197

. 202

. 207

SECTION 1

EZ-80 Theory

CHAPTER 1

EZ-80 Component Parts

This chapter discusses the general theory behind
the EZ-80. Rather than discussing abstract computer
design theory, we are going to rush into the general
approach used on the EZ-80. The EZ-80 design is very
similar in concept to most other microcomputers and
minicomputers (and even much larger computers)
and we will not lose any background in computer
theory by this approach. As a matter of fact, since
this is a concrete example of a working computer, the
reader will have a sound basis in computer funda-
mentals if he or she studies the EZ-80 theory in the
following chapters.

Suppose that you dont want to get into the nuts
and bolts of computer theory as used for the EZ-80.
That's fine. You may bypass these chapters and go
directly into the construction of the EZ-80 and the
specific projects in which you are interested. You
may wish to come back to the theory after you have
a working microcomputer. If your interests are in pro-
gramming, another possible approach is to scan the
theory chapter, construct the EZ-80, and then use the
applications programs presented here or design your
own.

Still another alternative is possible. Suppose you
do not even want to build the EZ-80. The author’s
feelings will not be hurt if you wish to use the book
as a reference text on simple microcomputers. The
techniques presented here are adaptable to any
microcomputer, and you may wish to design your
own with some reference to this book.

This section, EZ-80 Theory, describes the general
theory of the EZ-80. An overall picture is first pre-
sented, and the EZ-80 is broken down into component
parts of central processing unit (cpu), memory, input/
output (i/o0), and software. Each of these components
is then studied in some detail, as it relates to the EZ-80.
Finally, in the last chapter of this section, the compo-
nent parts are studied together as a package—the
EZ-80.

11

EZ-80 CPVU

The EZ-80 system in block diagram form is shown
in Fig. 1-1. The cpu, or central processing unit, is the
main controlling component of the system. Its func-
tions are:

¢ To fetch and execute instructions from memory

¢ To store and retrieve data from memory

e To store and retrieve data from the input/output
section

¢ To oversee all system functions

The cpu used in the EZ-80 is a microprocessor
called the Z-80. The Z stands for Zilog, the original
manufacturer of the Z-80 (several companies now
manufacture it). The 80 has no particular significance,
except that the microprocessor is an 8-bit micropro-
cessor and supersedes another microprocessor, the
Intel 8080.

The physical appearance of the Z-80 in the EZ-80
is shown in Fig. 1-2. As you can see, it is basically
a 40-pin (40 legs, 20 per side) semiconductor inte-
grated circuit. It is about 2 inches long by % inch
wide.

Packed within that 1 square inch are tens of thou-
sands of transistors that connect to implement a fully
functional digital computer roughly comparable to
the cpu of a small IBM computer of several years
ago! The Z-80 can add hundreds of thousands of
numbers per second and, by executing a variety of
different types of instructions, can perform virtually
any data processing task.

The instruction set of the cpu consists of about 200
different instruction types. Typical instructions are
instructions to add two numbers, to subtract two
numbers, to store a number in memory, or to retrieve
a number from the outside world via input/output.
The instructions are generic in nature so that many

EZ-80 THEORY

CLOCK
Bl LED DISPLAY
UNIT . ==
(CPU) gLINEs LIl—[_1] 1
NMI INPUT/OUTPUT
INTERRUPT SECTION
(PROGRAMMABLE OUTPUT LINES (6)
PERIPHERAL B
________________________ INTERFACE, OR
i -i I MEMORY K PPI)
i yo. =3 i
| | | 1
I [} 1 [}
I [} I]
] i ERASABLE ! INPUT LINES (5)
! ! 1 |PROGRAMMABLE | |
|| : : MEMORY i
| SOFTWARE :»—o-—: EREON |
! . ! KEYBOARD
1 1] I
i LT | ; 1 2 3
| i 1| ravoow | 3 LINES
i -y ACCESS :
: s MEMORY : 4 5 6
i gl (RAM) i
i £ g i
]] 1] 7 8 9
] | | |
R - L I S —— |
BACK
space | 0 | ENTER

Fig. 1-1. EZ-80 system block diagram.

different applications may be built up from a sequence
of hundreds of instructions called programs.

The cpu operates at a constant rate called the clock
frequency. Every action within the cpu is broken
down into increments of this clock frequency. The

Fig. 1-2. Board with Z-80 microprocessor chip.

Z-80 microprocessor is capable of operating at clock
frequencies of up to 4 million cycles per second. The
clock frequency chosen for the EZ-80 is 1 million
cycles per second to utilize a less expensive version
of the Z-80 and to provide a good design safety mar-
gin. The block called “clock” (Fig. 1-1) is the circuitry
that generates the 1 million cycles per second, or 1
megahertz (abbreviated 1 MHz), clock frequency.
One megahertz simply means one million (mega)
cycles per second (hertz).

The period of the clock frequency is 1 microsecond
(1 ps), or 1 millionth of a second (micro = millionth).
Every action taken in the cpu occurs in increments of
half the period. Each instruction that the cpu executes
varies from 4 clock periods to over 20 clock periods,
so the reader can see that instructions may be any-
where from 4 microseconds to over 20 microseconds
long.

The NMI interrupt block is used to signal the cpu
that another 1/100 of a second in the real world has
passed. The clock (1 megahertz) and interrupt are
separate functions. This 1/100 second, or 10/1000

EZ-80 COMPONENT PARTS

second, or 10-millisecond (10-ms) interrupt (milli=
1/1000) is used by the EZ-80 to keep track of time,
as many program functions, such as using the EZ-80
as a timer, must have some provision for handling
real-time. The 1-megahertz cpu clock cannot be used
for this function because the cpu cannot reasonably
keep track of how many clock cycles have elapsed.

EZ-80 MEMORY

The memory block of Fig. 1-1 is another major
system component. Every computer has a memory
to store programs and data. Programs are a sequence
of instructions to be performed. Each instruction is
coded as a unique numeric value. For example, an
instruction that adds two numbers in the cpu is a
128, while an instruction that tests whether one num-
ber is larger than another is 184. Instructions are
built up with a number of these numeric values rang-
ing from one value (such as the 184) to four values,
such as 221, 54, 0, 23, which transfers a value of 23
to a memory location. Every value in an instruction is
some number from 0 to 255. We will see why this is
true shortly.

Data is also stored in memory and, on a transient
basis, in the cpu. “Data” is a generic term that de-
scribes a variety of information types. If the data is a
telephone number such as 555-7004, for example, the
data may be broken up into seven pieces and stored
in seven locations in memory, each representing one
digit (the dash is not stored in this example, but it
could have been). If the data is an employee number
of an Al-Joe-Eddie’s Pizzeria employee, a small opera-
tion, the data might consist of one location in memory,
as the employee number will never exceed 255. Data,
in short, can be anything that can be broken down
into digital form, and just about everything can.

Why is the range of numbers from 0 to 255 im-
portant? All instructions and data are stored in seg-
ments called bytes. A byte is a collection of eight
bits. Bit is a contraction of the term binary digit. The
EZ-80 is a digital computer. All data and instructions
are in binary digital form in the EZ-80, as they are in
all digital computers.

BINARY NOTATION

Binary numbers are made up of combinations of
two digits: 0 and 1. One (1) represents an on condi-
tion, while zero (0) represents an off condition. Think
of a room light switch as a binary device as it turns
the light on (1) or off (0).

In our decimal notation system, a number repre-
sents powers of 10 as in the example in Fig. 1-3. Note

13
1234

ll 4x10= 4

Ix1l= 30

2x102= 200

1x 103 = 1000

1234

Fig. 1-3. Decimal number notation of 1234.

ZZzZZZZZZ
Scocgoocoe
EEEEEEEE
DN DN DN
OO0
oo o oo e o
VRV LAULIR
11011101

‘l Ix200= 1

0x2l= 0

Ix2%2= 4

IxB= 8

Ix2%= 16

0x 2= 0

1x206= 64

Ix2 = 128

221
Fig. 1-4. Binary number notation for decimal 221.

that any number to the zero power is always 1. Just
as our decimal system uses positional notation to rep-
resent powers of 10, the binary system uses positional
notation to represent powers of 2. The binary number
11011101, for example, translates to the decimal num-
ber 221 as shown in Fig. 1-4.

The binary number above is made up of eight bits
(binary digits) and represents the decimal equivalent,
291. In the EZ-80 and in many digital computers, each
memory location holds one 8-bit number, or one byte.
Each bit of the byte is held as an electrical condition
of on or off, similar to the on/off condition of a switch.
What is the maximum number that can be held in one
byte? That number is the binary value 11111111,
which represents the value shown in Fig. 1-5. Hence,
there is the limitation on the values that we spoke
of earlier. The range of values that can be held in
8 bits, or one byte, is 0 through 255 (00000000 to
11111111). Note that this does not mean that we
cannot work with values larger than 255. It simply
means that all data and instructions are broken up
into 8-bit chunks.

To get back to the memory of the EZ-80, the EZ-80
memory is made up of two chips, each slightly smaller
than the Z-80 microprocessor. The memory chips are
much less complicated than the Z-80 in that they have
only two functions: storage and retrieval of data. One
of the chips is a 2758 EPROM (Erasable Program-
mable Read-Only Memory) while the other is 6810
RAM (Random Access Memory). The number as-
signments are not significant, but reflect the manu-
facturer’s designation.

14

EZ-80 THEORY

ONE BYTE =
8 BITS

MINIMUM NUMBER IN 8 BITS = 0

TYPICAL NUMBER IN 8 BITS (30}

MAXIMUM NUMBER IN 8 BITS

l l—lxz": 1
‘ I1x2l= 2
Ix2= 4

Ix2= 8

Ix2= 16

Ix8= 32

I1x28= 64

1x2= 128

255

Fig. 1-5. Binary numbers In bytes.

EPROM MEMORY

The 2758 EPROM architecture is shown in Fig.
1-6. It is made up of 1024 memory locations, each 8
bits or one byte wide. The 2758 is sometimes desig-
nated a 1KX8 memory chip, where K stands for 1024
and 8 stands for 8 bits per location. Within the 1024
(2°) locations, instructions or data for the cpu may
be stored.

In the EZ-80 the EPROM Ilocations are numbered
0 through 1023, for a total of 1024, counting 0. The
cpu retrieves data a byte at a'time from the EPROM
by sending out an address over 16 address lines. The
address is a collection of 16 bits, one for each address
line. To retrieve the data stored in EPROM location
100, for example, the cpu puts the value of 100 on the
16 address lines, as shown in Fig. 1-7. As the maxi-
mum location in the EPROM is location 1023, the

ONE BYTE
(8 BITS WIDE)
—————
LOCATION 0
LOCATION 1

1024 MEMORY LOCATIONS
(1024 BYTES)

LOCATION 1022
LOCATION 1023

Fig. 1-6. EPROM architecture.

0
CPU (o] u EPROM
s et
0] -
0] |
10 -
0]]
0] | |
AoDRESS | (3 -
LINES - E— — — ADDRESS
1]] G
0] | LOCATION
0] [| 100
1 |
0 | |
. l h—
\
r]
| [
DATA | -— —
LINES | | =

Fig. 1-7. EPROM operation.

cpu will never address the EPROM with a binary
value greater than 0000 0011 1111 1111.

At about the same instant that the cpu puts the
EPROM address on the 16 address lines, it reads in
the data from 8 data lines that connect to the memory.
The data lines hold the 8 bits of data from the
EPROM memory location that was addressed. In the
course of executing a program the EPROM is ad-
dressed for new data and instructions hundreds of
thousands of times per second. In the EZ-80 system
the EPROM memory holds both the computer pro-
gram broken up into 8-bit bytes and also some con-
stant data. An example of the latter would be a con-
stant value of 116, recorded in EPROM as a binary
value of 0111 0100. In future references to data, we
may mean either instructions or data, as they amount
to the same thing. We will differentiate between in-
structions and data only when we mean one or the
other.

The EPROM is a read-only memory. That means
that data can be read out from the memory, but that
nothing can be written to the memory. Since the
EPROM is used in the EZ-80 to store programs and
constant data (that never change), it is not necessary
to write data into the EPROM. The term “EPROM,”"
however, is a misnomer. The EPROM must have been
loaded with the program and constant data at some
point. That's obvious. The EPROM should really be
called a mostly read and seldom write memory. To
write data into the EPROM it is necessary to remove
the EPROM from the system, erase old data by ex-

EZ-80 COMPONENT PARTS

15

posure to ultraviolet light, electrically program the
EPROM a location at a time, and then put the
EPROM back in the system with the new program
and data. As the procedure does not lend itself to
writing data tens of thousands of times per second,
the EPROM was developed specifically for storing
seldom-changing programs and constant data.

RAM MEMORY

The RAM memory used in the EZ-80, however, is
a read/write memory. Data can be both written into
the RAM and read from the RAM. The number of
bytes that the RAM can hold is one-eighth the number
of the EPROM, or 128 bytes. This is just an arbitrary
size for the RAM which has been dictated by two
factors: cost and storage requirements for the EZ-80.
The size of RAM might have been much greater.
Many microcomputers use up to 65,536 bytes of RAM
rather than 128, but 128 bytes of RAM allow a great
deal of storage for many applications. The principles
of memory/cpu communication also apply to 128
bytes of RAM just as they do in larger configurations.

The 6810 RAM architecture used in the EZ-80 is
shown in Fig. 1-8. The addresses of the 128 RAM loca-
tions are 2048 through 2175 (binary 0000 1000 0000
0000 through 0000 1000 0111 1111). The cpu ad-
dresses RAM by putting a 16-bit address in this range
on the address lines and then reading 8 bits of data
from the RAM or writing 8 bits of data to the RAM.
The read or write function is sent to the RAM via
the control lines.

Data is continually being transferred between the
cpu and RAM memory. RAM is used to hold tempo-
rary results and data that will be used in the applica-
tions program. Note that EPROM data is permanent
(or at least lasts 30 years or so); RAM data is de-
stroyed once the power to the system is turned off.
A term used for this type of storage is volatile mem-

ONE BYTE
(8 BITS WIDE)
e e

LOCATION

2048
LOCATION |

2049

128 LOCATIONS
(128 BYTES)

LOCATION

2175

Fig. 1-8. RAM architecture.

ory—it remains only as long as power to the system
is on, ‘

EZ-80 INPUT/OUTPUT

Referring back to Fig. 1-1, let’s look at another
element of a typical microcomputer system. The in-
put/output section, or i/o, is the system component
that allows communication with the outside world.
In the EZ-80 the outside world is connected by 24
lines from an 8255 PPIL, or programmable peripheral
interface chip. The 8255 is the same size as the Z-80
microprocessor chip and between the microprocessor
and memory in complexity.

The 24 lines of the PPI represent 24 bits of binary
data. There are four groups of the 24 lines in the
EZ-80. Eight of the lines go to the LED display. The
LED (light emitting diode) display is a common cal-
culator-type display that allows four decimal digits
to be displayed. Another 3 lines are input lines that
come from the keyboard. The keyboard is similar
to a telephone-style push-button keypad. The digits
0 through 9 and two other buttons may be input to
the Z-80 via the PPI. Another 5 lines are input lines
from the outside world. These may connect to burglar
alarm switches, to fire sensors, or to other on/off
devices. The remaining 6 lines are output lines that
are used to send data from the EZ-80 to the outside
world to open doors, send audio signals to a speaker,
and so forth.

The PPI is an i/o interface that is addressed simi-
larly to a memory location. The cpu can send one
byte of data to the PPI and the PPI will then route
it to the appropriate set of lines to display LED data
or to signal the outside world. The cpu may also read
one byte of data representing the state (0 or 1) of the
five input lines or a digit from the keyboard.

EZ-80 SOFTWARE

Another element shown in Fig. 1-1 is the EZ-80
software. The system software depends upon the ap-
plication. For the applications of this book, from 600
to 1200 bytes of software may be required, represent-
ing a complete program. Since the average instruc-
tion is about 2 bytes long, the programs in this book
consist of about 300 to 600 instructions, all stored in
the EPROM. The chief advantage of the EZ-80 over
a comparable “hard-wired” piece of equipment is that
the latter cannot be changed except by rewiring
whereas the EZ-80 may be much more easily changed
by rewriting the program. As a consequence the
EZ-80 is much more flexible and can be put to a
variety of uses. We'll be talking a great deal more
about software and programming in later chapters.

EzZ-80 THEORY

16

8
B by
i1 fd X
._”. i1 "N
T s 11
" [[EST) %l
_ . i A & o
..... N) 4 s
. 33
] 301 mmﬂ AW W} “ st 1 J%M nvﬂﬁ L o ny
N L ¥IIN ! .
iy A I ‘AIUIE 37| 1 R R
i 6 £ i (3
A I rma N lg i
f l R ! n [5e u
% st q 10 £
> B " Loty P .AI..¢||_3> sm 00 a4 &
2 [t W
2 'ON Y4OMLIN ontd gy SOSTL 95 00 J££)
YOLSISTU ¥ T 1 T %]
w=n—> iz N 74 e)
il 3 D 7] * b4 N I
oo
¥ Nl o— > . =] ne "
~ & 9142) o1
£Nl o - > B u @512 W | oty
N 4>— %4 o € WI4Z) p—— Daum wor ot
T % v T - 3
1Nl o T {7 m 0d wﬂ 30 a_aun& 0 vﬂn:< 2 nm
05T T i1 T
+ B W 7 wot ¥ot
a 1] €0 n o
9100 o— 2 <P <71 08 20 “
LT o
100 o <] 5 =] 84 41 00 0y
g | .
100 o- T \q.lz 7T 971 %8 45z
£100 o- - ; w71 cd . s 1 ot T ‘_O-F---..
P 7] % LY '
2100 o o 5> | | = MM iy 7|J~|u¥= b
. ST i == Py w
1100 o TN e 2 7] 58 €0
. T " P i oo e
*_{aw n n|8> % ZOYINY: B
7] ? N0 m 10 .
) B 9N =] 94 ov o m
Hi K 4 o 13 1 Wit %y M] _
6 b ovd w 1353 [el
] ¥] o 153 P 0 =
o 0 8l] v L&.m " w1 szovom
E] w
n w o A mm o “ xy _ m.
q Jil | —
a o5 ¥ s on \Lm v s
TR OO I (O O (A " nisnan g 03008 o] .]._.
¥a $. V| ¥
T°ON YHOMLIN T wa S w« | M R GRS 200
¥0ISIS3Y O 0EE <0 o 4] 2y o 1|._.
P T 3 120m %
A ovd £Iv £Iv sosTL 1 ¢
_13%008 L 16 f2 I8 1z 7 <l & 50 p— Do "y iy
g suﬁ\ﬁ TR . w 6 ME sIv sIv oet
“SON Nld 35341 A
T & I T w| Wp—o W ——pq i At 1z
2k Ky N % b N am— [F]os
It <= 3 ATl = [ﬁ M n
N A £l e aﬂ o.uuulul..llo_ As+ Qush8 P
In 0y v
)))

Fig. 1-9. EZ-80 logic diagram.

EZ-80 COMPONENT PARTS

17

7437

Fig. 1-10. EZ-80 microcomputer
board.

74L805 MC4024

EZ-80 LOGIC DIAGRAM

Fig. 1-9 is the logic diagram of the complete EZ-80.
Each rectangle (sold-line or broken line) represents
a semiconductor integrated circuit. The layout of Fig.
1-9 roughly corresponds to the layout in Fig. 1-1. The
physical counterpart to Fig. 1-9 is shown in Fig. 1-10,
which shows the parts mounted on a board and iden-
tifies each semiconductor. The construction of the
EZ-80 involves connecting the lines shown in Fig. 1-9.
Each line represents a signal from a semiconductor
pin.- The A9 (Address Line 9) pin of the Z-80, for
example, connects from pin 39 of the Z-80 to pin 22
(A9) of the 2758 EPROM. We'll be discussing each
of the component parts of the EZ-80 in detail in the
chapters of this section.

Let’s discuss some of the symbology used in Fig.
1-9. Different symbols shown in Fig. 1-9 represent
semiconductors, resistors, capacitors, switches, and,
within the semiconductor rectangles, inverters.

As Figs. 1-9 and 1-10 show, there are four sizes of
semiconductors in the EZ-80. The Z-80 and PPI are
40-pin devices with 20 pins on each side. The 2758
EPROM and 6810 RAM are 24-pin devices with 12
pins per side. The remaining devices are either 14-pin
devices (7 per side) or 16-pin devices (8 per side).
Fig. 1-9 shows all pins on the devices, their signal
names (within the rectangle), the pin number (out-
side of the rectangle), and the connections to other
components or devices within the system.

The capacitors are discrete components (not semi-
conductors). The capacitor is a device for storing

741504 74367 MC14511

Z-80 8255 6810 2158

energy and is used in the clock and interrupt circuits.
The symbols for the capacitors are shown in Fig.
1-11A. Physically, they appear as disks or small tubular
components as shown in Fig. 1-11B.

Resistors come in two types. A device that holds
seven resistors is used to simplify wiring. The ap-
pearance of such a resistor pack is similar to a semi-
conductor chip. Another type is a discrete resistor,
which is shown in Fig. 1-12A along with the symbol
for the resistor. A resistor is used to limit current. In
the EZ-80 it is used primarily as a “pull-up,” that is, a
connection to a positive voltage. Fig. 1-12B shows a
potentiometer, or a variable-resistance resistor.

There is only one set of switches used in the EZ-80
proper (there is a power supply switch)—the switches
on the keyboard. The symbol for the switch is shown
in Fig. 1-9.

The inverters within some of the broken lines are
represented by a triangle with a circle at the apex.

INDICATES
POLARITY
£t ol
A pf 1pF35V
(A) Symbols.

INDICATES POLARITY

(B) Physical appearance.
Fig. 1-11. Capacitors used in the EZ-80.

18

EZ-80 THEORY

10K

AA'AY

SYMBOL

COLORED BANDS
SPECIFY VALUE

8 N A
oy R £ B
B B bl 'ﬁ“
B\

APPEARANCE

(A) Fixed resistor.

ADJUSTING
SCREW
10K
SYMBOL

APPEARANCE

(B) Potentiometer.
Fig. 1-12. Resistors used in the EZ-80.

The only function of an inverter is to invert a binary
value from a 1 to a 0 or from a 0 to a 1. This is usually
necessary to match the logical requirements of one
device to another. For example, the LED display
must have a logical 0 on pin 1 for the leftmost digit
on the display to light. The inverters within the 7437
package invert the binary 1 which appears on the
output of the PPI to a binary 0 to enable the display
of a digit in the leftmost position. (Another function
of the inverter in this case is to provide higher cur-
rent than is normally available from the PPI chip.)

The voltage used for the EZ-80 is +5 volts dc. The
5 volts is a common voltage used with MOS (metal-
oxide semiconductors—the Z-80 and larger semicon-
ductors) and TTL (transistor-transistor logic—most
of the remaining parts). When binary levels are trans-
lated into physical voltages, a binary 1 is expressed
by +3.0 to +5 volts, while a binary 0 is expressed
by about 0 volts. The V¢ represents the +5 volts and
the 6ND or 4 symbol represents the ground line of
the +5-volt power supply.

In the following chapters of this section we’ll be
looking in detail at the cpu, memory and i/o sections
of the EZ-80, using this introductory chapter as a
basis.

CHAPTER 2

The CPU Section

The cpu section of the EZ-80 is discussed in detail
in this chapter. The basis of the cpu is the Zilog Z-80
microprocessor, an 8-bit microprocessor that has be-
come extremely popular for all types of designs in-
corporating a general-purpose microprocessor. The
Z-80 requires a minimum of support circuitry, that is,
a working microcomputer can be implemented using
just a few additional components with the Z-80. In
this chapter we’ll discuss the internal structure of the
Z-80, the pinouts or signals going into or originating
from the Z-80, and the processing cycles of the Z-80.
In other chapters in this section we’ll see how memory,
i/o, and software relate to the Z-80.

GENERAL CHARACTERISTICS OF THE Z-80

The Z-80 is a “third-generation” microprocessor.
Its grandfather was the Intel 8008 and its father was
the Intel 8080. The built-in instruction set of the Z-80
contains instructions that were used in the 8008 and
8080, and the internal layout, or architecture, of the
Z-80 is built along the same lines as the 8008 and 8080.

The instruction set of the 8008 is 58 instructions
and the instruction set of the 8080 is 78 instructions.
The Z-80 includes all of the 78 instructions of the
8080 and adds quite a few more to provide about 158
total instruction types. In addition, the speed at which
instructions can be executed is about twice as fast on
the Z-80 than in the 8080, and an order of magnitude
faster than the 8008. In addition, the Z-80 requires
far fewer support chips than either the 8080 or 8008.
Both the 8008 and 8080 required quite a few chips
(8-12) just to generate a clock signal, to decode the
signals originating from the microprocessor, and to
drive other parts of the system.

ARCHITECTURE OF THE Z-80

Let’s take a look at the internal architecture of the
Z-80 in light of its predecessors. The most elemental

19

part of the Z-80 and any other microprocessor as far
as data handling is concerned is a register. In this
case the register is termed cpu register since it is in
the microprocessor. A register is simply a storage cell
or memory location in the cpu. Like other memory
locations in many microcomputer systems, it is 8 bits
wide, that is, it can hold 8 bits of data as shown in
Fig. 2-1.

The main register for data handling in the Z-80
is the A register. The A register's name is derived
from the term accumulator register. It is the register
in many systems that accumulates the results of adds,
subtracts, and other operations. If two operands are
added in the Z-80, for example, one of the operands
is held in the A register, the operands are added, and
result of the add is put back in the A register. As the
A register is 8 bits wide, the operands must be decimal
0 to 255 and the result must be 0 to 255. Adds of
larger numbers are performed by other methods
which we’ll discuss later. Almost all arithmetic opera-
tions are performed by use of the A register, however.
The A register is shown in Fig. 2-2.

One of the chief functions of the Z-80 cpu and of
any microprocessor is to perform arithmetic opera-
tions, that is, adds or subtracts. The portion of the
Z-80 that implements this is called the arithmetic and
logic unit, or alu. One of the inputs to the alu is the
A register, as shown in Fig. 2-3. The second input to
the alu is an 8-bit operand from a memory location or
from another cpu general-purpose register. The out-
put of the alu generally goes to the A register, de-
stroying the previous contents of the A register. Sup-
pose that the A register contained decimal 53 and that
a memory location used as the second operand con-
tained decimal 27. An ADD instruction that added
the contents of the A register and the memory location
would add 53 (A register) and 27 (the location in
external memory), and the result of 80 would be put
back into the A register, replacing the 53. The alu
can perform adds, subtracts, logical operations such

20

EZ-80 THEORY

8 BITS 8 BITS

8 CPU
REGISTERS

P,

Fig. 2-1. Registers of the cpu.

as ANDs and ors, shifts—such as moving the contents
of a register one bit to the right—and other operations.
We'll discuss these in later chapters.

While the Z-80 A register is generally dedicated to
being used for arithmetic operations and other func-
tions, the Z-80 contains other general-purpose reg-
isters. For reasons which may become obvious, six
of these are designated B, C, D, E, H, and L. They
are shown in Fig. 2-4. Each of them is 8§ bits wide, as
is the A register, so they can hold binary values of
0000 0000 (0) to 1111 1111 (255). These general-
purpose registers are used to hold intermediate re-
sults or for temporary storage. For example, the result
of an ADD could be moved from the A register to the
D register by the Z-80 instruction LD D,A, Load D
with A. In general, these registers are continually be-
ing used in programs to hold intermediate results.
Why not use external memory for this purpose? The
cpu registers can be accessed much more rapidly and
simply than an external memory location. (It takes
over three times as long to store the A register into
a given external memory location than into the B
register—for example, 13 microseconds versus 4 micro-
seconds in the EZ-80.)

As the reader can see from Fig. 2-4, we have
grouped the seven registers in the Z-80 in sets of
two. Register B is associated with C, D with E, and
H with L. The registers taken two at a time constitute
register pairs of BC, DE, and HL. Certain instructions
in the Z-80 allow the registers to be treated this way.
When register pairs are used in this fashion, they are
really a single 16-bit register rather than two separate
8-bit registers. The HL register pair, for example,
now looks like the register shown in Fig. 2-5, a 16-bit

8 BITS 8 BITS

8 CPU
REGISTERS

Fig. 2-2. Representation of the A register.

RESULT (REPLACES A
REGISTER CONTENTS)

ARITHMETIC AND LOGICAL

UNIT (ALU)
OPERAND
NO. 1
A REGISTER

OPERAND NO. 2 FROM
CPU REGISTER
OR MEMORY

Fig. 2-3. Arithmetic and logical operations.

8 BITS 8 BITS
A REGISTER
B REGISTER C REGISTER -
D REGISTER E REGISTER REGISTERS
H REGISTER L REGISTER

Fig. 2-4. General-purpose registers.

register with bit positions numbered from 15 to 0,
left to right. When registers are used in this manner,
they can hold 16 bits of information, allowing arith-
metic operations of 16 bits at a time. An operand in
the BC register pair can be added to an operand in
the HL register pair through the alu, for example. The
result is put into the HL register pair. Sixteen-bit adds
and subtracts use the HL register pair in a manner
analogous to the A register. It is the “16-bit accumu-
lator” that holds one of the operands before the add
or subtract and the result after the operation. Fig.
2-5 shows the 8- and 16-bit arrangement of the gen-
eral-purpose registers in the Z-80.

There is an eighth register in the cpu that fills the
vacant space for the register associated with the A

16 BITS
BBITS 8 BITS
A REGISTER 1 W

| EIGHT 8:BIT

. CPU REGISTERS,
BC REGISTER PAIR | BREGISTER | C REGISTER FOUR 16BIT

i REGISTERS,
DE REGISTER PAIR | D REGISTER | EREGISTER OR ANY
HLREGISTER PAR | W REGISTER | LREGISTER | | COMBINATION

Fig. 2-5. Register pairs.

E CPU SECTION

21

gister. This is the flags register, or F. The flags are
bit cells within the Z-80 cpu that contain informa-
n about the results of operations. Adding two oper-
ds, for example, sets the Z(ero) flag if the result
the add is zero, and sets the S(ign) flag if the
sult is a negative number. The flags are grouped as
e F register and make up the second register of the
F register pair, as shown in Fig. 2-6. The flags can
» tested by certain instructions within the program
ch as JP M,1234, which causes a jump to location
134 if the result is minus, or negative. In general, the
\gs are set by the alu and are shown as being asso-
ated with it.
The register pairs BC, DE, and HL are not only
ied to hold 16-bit data for arithmetic operations.
he original use of the HL register pair in the 8008
as to act as a pointer to an external memory location.
he H(igh) register contained the 8 high-order bits
' the memory address, while the L(ow) register con-
ined the 8 low-order bits of the memory address.
his use is carried over into the Z-80. In the EZ-80,
r example, the HL register pair can be loaded with
ie value of decimal 1023 (0000 0011 1111 1111) and
1 instruction such as LD A,(HL) executed. In this
ample the A register would be loaded with the
bit value from memory location 1023. The HL reg-
ter pair would have been used as a pointer to the
emory location for the load operation. Although
L. was the original register pair used for this type
" addressing, instructions to use BC and DE were
Ilded in the 8080 and Z-80. Use of register pairs in

16 BITS
g BITS 8 BITS
! EIGHT 88IT
! REGISTERS
| / P FOUR 16-BIT
! REGISTERS
L H L
Faes | s | z n NN C
= o > = 2w >
2 &8 £8 £2:28 ¢
3> ZE32 3
Ly ~8Ez
= o o
— —
g S

Fig. 2-6. Flag register and general-purpose registers.

addressing will be covered in the software chapter
of this section. '

Actually, we haven't been quite complete in dis-
cussing the general registers in the cpu. The registers
we’ve been discussing consist of eight general-purpose
registers including the flags, as shown in Fig. 2-6.
There is really a duplicate set of these registers, desig-
nated the primed () set, as shown in Fig. 2-7. How-
ever, only eight of the sixteen can be used at any
given time. The choice between one or the other is
made by two Z-80 instructions that select either AF
or AF’, and B through L or B’ through L’. At any
given time, then, the program has only eight of the
sixteen available although the other set can be se-
lected in a few millionths of a second. Why have two
sets? For one thing, extra storage capability in the
cpu is sometimes required. Since the second set can
be switched to rapidly, a second reason is that two
sets make interrupt handling more efficient. We'll
cover the second reason later in this book.

In addition to the sixteen general-purpose registers,
the Z-80 cpu has six other registers that are available
to the EZ-80 user through programming (see Fig.
2-8). Two of these are 16-bit index registers desig-
nated IX and IY. The index registers were not in the
8080 and have been added in the Z-80 to enable a
type of addressing capability called indexing. Index-
ing allows the IX or IY register to be used as a type
of indirect pointer similar to the HL or other register.
We'll discuss indexing in the software chapter of
this section.

The I and R registers are two special-purpose reg-
isters used for interrupts and memory refresh logic.
The I register is used to allow up to 128 different
interrupts to signal external conditions such as “key-
board character typed,” “out of paper,” or “house
burning down.” We will be using only one type of

ONLY ONE SET OF AL
OR A"- L' USED AT
ONE TIME

16 BITS
8 BITS 8 BITS
2 i i N T -
AF A : F
BC B : c
1
1
DE D : £
|
1

Fig. 2-7. Primed and unprimed registers.

22 Ez-80 THEORY
16 BITS MEMORY
8 BITS 8 BITS LOCATION LENGTH PROGRAM
AF U A s E o F M 512, 513 2 LD B,15 ;15 TO B REGISTER
BC 8 : c 514, 515, 516 3 LD A,2048) :GET LOCATION 2048
i
DE D i £ 517 1 ADD AB
HL H \ L 518 {OTHER INSTRUCTIONS)
H CPU GENERAL -
A Iy I: P PURPOSE REGISTERS
BC’ B E ¢ Fig. 2-9. Program counter use.
+ ’ ; ’ » .
DE D | £ left side of the figure. The execution of these three
HL " i L instructions proceeds as follows:
1. PC initially set to 512 decimal.
INDEX REGISTER X 2. First byte of LD B,15 instruction is loaded
INDEX REGISTER IY into cpu.
CPU SPECIAL - 3. PC increments to 513.
STACK POINTER (SP) PURPOSE REGISTERS 4. Cpu recognizes that this is an LD B type in-
PROGRAM COUNTER (PC) struction and knows that it must read in the
| REGISTER contents of location 513.
R REGISTER | | 5. Cpu reads in second byte of LD B,15 instruc-

Fig. 2-8. Complete Z-80 register set.

interrupt, the non-maskable interrupt, for the EZ-80
so the I register will not be used in our design. The
NMI (non-maskable interrupt) is discussed later in
this section.

The R register is likewise not used for the EZ-80.
The R(efresh) register is an 8-bit register that is used
to provide a refresh address for a type of microcom-
puter memory called “dynamic” memory. As the mem-
ory used in the EZ-80 is “static” memory and does not
need to be continually refreshed (or have data re-
stored), the R register will not be discussed.

The remaining two registers used in the EZ-80 are
the PC (Program Counter) and the SP (Stack
Pointer). Both of these relate to external memory. The
program counter is a 16-bit register that points to the
current instruction that is being executed. A program
in the EZ-80 and any other computer is a string of
instructions in the memory. In the Z-80 the length of
each instruction is from one to four bytes. Let’s look
at a typical program to see how the PC in the Z-80
operates.

Fig. 2-9 shows a portion of a program in memory
consisting of three instructions. The first loads the B
register with 15 decimal (LD B,15). The next loads
the A register with the contents of memory location
2048 decimal [LD A,(2048)]. The next adds the A
and B registers (ADD A,B). The length of each in-
struction and its memory location are given on the

tion.
. PC incremented to 514.
. Cpu executes LD B,15 by loading B register
with 15.
8. First byte of LD A,(2048) instruction is loaded
into cpu.
9. PC is incremented to 515,

10. Cpu recognizes that this is an LD A type in-
struction that will load from a memory location.

11. Cpu reads in next byte (first half of memory
location).

12. PC is incremented to 518.

13. Cpu reads in next byte (second half of memory
location).

14. PC is incremented to 517.

15. Cpu executes LD A,(2048) by reading contents
of memory location 2048 and putting it into A
register.

16. Cpu reads in first byte of ADD A,B instruction.

17. PC is incremented to 518.

18. Cpu recognizes that this is ADD AB instruc-
tion and executes the instruction by adding
contents of A register with contents of B reg-
ister and putting result in the A register.

~N;»

Notice that the PC is used to point to the next byte
of each instruction. The cpu knows how long each
instruction is by the first byte of the instruction. If
the instruction is more than one byte long, additional
reads of memory locations are made until the entire
instruction is assembled in the cpu. This preliminary

[E CPU SECTION

23

tching of the bytes of the instruction is the fetch
cle. Once the instruction is assembled in the cpu,
e cpu executes the instruction by performing the
oper operation. In some cases this can be done with
ly data in the cpu (ADD A,B), while in other cases
|ditional data must be retrieved from other memory
cations unrelated to the current location of the in-
‘uction.

The PC is incremented by one for each new byte
the instruction read, but remains unaffected for
her data read from memory during the execution
iwtion of an instruction. The PC is exactly what the
me implies; it points to or counts the location of
e next instruction.

The program normally proceeds one instruction
ter another in sequence as in Fig. 2-9. However,
e sequence of instructions can be altered from one
struction after another to a new path by a jump
struction. A jump instruction transfers control to a
'w set of instructions somewhere in memory. If the
xt instruction after the ones in Fig. 2-9 was a JP
6, the PC would be loaded with the value of 636,
«d the instructions starting at memory location 636
buld be executed. In this way, a program may have
erally thousands of paths, or branches, even in a
ogram as short as 500 instructions. The program
th is altered by jumps based on conditions such as
ro result, minus, or equality or simply on uncondi-

NTENTS !

)F PC .

21 ~ LD (1234H), A - SAVE FOR PROCESSING
224 L CALL 636 ; CALL 636 ROUTINE
w1 : THIS ADDRESS SAVED

; IN STACK BY "CALL"

RETURN
CALL 636

636 — LD HL, TABLE ; START OF TABLE
639 [—LD CA ;FLAGSTO C

640 rLoBo ; FLAGS NOW IN BC
642 — ADD HL,BC ; POINT TO ENTRY
643 — LD A(HL) ; GET ENTRY

644 L RET

; RETURN (RETRIEVE

; RETURN ADDRESS FROM
; STACK)

Fig. 2-10. Use of stack.

tional jumps that always cause a jump to a new
location. ’

The SP (Stack Pointer) is another 16-bit register
associated with memory. Whereas the PC always
points to the location of the next byte of the current
instruction, the SP points to the next stack location.
The stack is an area of memory reserved for storage
of certain types of data. The data may be stored in
the stack in lieu of storing it in cpu registers or in
another part of memory. Most significantly, the stack
is used to save addresses for certain types of jump
instructions.

When a “JP 636" is executed, the PC is loaded with
636 to start execution at memory location 636. The
location of the instruction after the jump is not saved.
The program does not know from which point the
jump was made if location 636 is entered from several
different points. However, executing a “CALL 636"
does save the address after the CALL so that a return
could be made at some later point as shown in Fig,
2-10. The return address is automatically saved in the
stack area when the CALL is executed, and a subse-
quent RET(urn) instruction will retrieve the return
address, load it into the PC, and cause a return to the
next instruction after the CALL. We will learn more
about the use of the stack for CALLs, temporary
storage, and interrupts in a later chapter.

As both the PC and SP are 16 bits, along with the
other register pairs and index registers used for ad-
dressing memory, the maximum memory address can
be 1111 1111 1111 1111, or 65,535 decimal. Because
of this 16-bit limitation, the maximum amount of
external memory in any Z-80 system (without special
banking schemes) can be 65,536 bytes (0-65,535).

In addition to the cpu registers discussed above,
there are many other “invisible” registers used for
holding the instruction to be decoded, holding the
memory address for instruction execution, and other
functions. As were not concerned with how the in-
struction set is implemented in the Z-80 as much as
how the Z-80 interacts with memory, i/o, and the rest
of the system, we will not be discussing the remaining
Z-80 registers.

Z-80 INPUT AND OUTPUT SIGNALS

Now that we've seen some of the internal architec-
ture of the Z-80 as it relates to the external memory
and i/o, let’s talk about the electrical inputs and out-
puts of the Z-80 microprocessor. Fig. 2-11 shows the
Z-80 as it is connected in the EZ-80.

The power supply inputs to the Z-80 are +5 volts
dc and ground (pins 11 and 29 respectively). All
signal inputs and outputs are TTL compatible, which

EZ-80 THEORY

Vee
Vee lll
5V
|) - 19
VI Vg 1] SR MREQ ~ foog—————> HREQ
g M R a—
2| Ml 1 N %g P RD
__________ 2 oW
| i ALS —3———»;\15
31 | .03 Al > Al
n LT A3 pS————— A3
i by 16 a2 -2 AL2
300 pF : MC4024 : : 741805 : All 1 All
1MHz 6 ! ! 6 40
| N " T D’*:z ® a0 a0
! b I 280 A9 gg
5| ;b - Py 5
r.,_l I Vee A2 A7
; i R EC
4 7 i 35
= | ' 10K AS 34
. MC4024 - 2% v
1 33
. . RESET A3
| i 13 24 n
o — T A o
1 | A0 3
! ' 07
11 ' 10
1 I g MO
: Mcl.s’gza : 05 (3
==) 38 171 7
o | e H ~ o H
s o L 07 I
:) NC —230 HALT D1 ST
. l Ne —23d BUSAR D0 -
L______t______' ne 21wt -
2]

Fig. 2-11. The Z-80 IC In the EZ-80 system.

means that a logic 0 is approximately 0 volts and a
logic 1 is 3.0 to 5 volts. The exception to this is the
clock input at pin 6 which must be “pulled-up” by a
330-ohm resistor as shown.

The clock input is a simple square-wave input that
appears as shown in Fig. 2-12. The frequency of the
square wave is 1 megahertz (one million cycles per
second) in the implementation of the EZ-80. This
frequency was chosen for convenience and to give
enough tolerance for the type of clock circuit chosen.
The clock circuit shown in the figure is a multivibrator
circuit contained in one-half of an MC4024 integrated
circuit. This chip produces a square-wave output de-
pendent upon the value of the capacitor and resistor
attached to pins 3 and 4 of the chip. The value shown
generates approximately 1 MHz. The output at pin
6 is buffered by an inverter (74L.S05) which is an
“open-collector” type that allows the square wave to
approach 5 volts instead of a somewhat lower voltage.

Vee

116

740
2 S05

MCa024

r——-

6 280

1 MHz

luS——] 1——-

Fig. 2-12. Cpu clock.

1 MHz / cPu
UL

r—

iE CPU SECTION

25

he 0- to 5-volt swing fulfills the requirements of the
-80 clock specification.

Every instruction executed within the Z-80 is di-
ided up into T cycles, which are essentially clock
rcles. Each T cycle is 1 microsecond (1 millionth
f a second) long. The number of T cycles within an
istruction varies from 4 to 23, making the execution
me of instructions from 4 to 23 microseconds.
There are two main buses originating from the
-80: the data bus and the address bus. A bus is
mply a collection of lines. The data bus lines are
17 through DO, with D7 the most significant (highest
inary weight of 128). All data that passes between
ie cpu and memory, and between the cpu and i/o,
transferred along the data bus. This includes all
ytes read from memory for instructions, all operands
1at are transferred between cpu and memory, and
I data that goes to or comes from external i/o. The
ata bus is byte-oriented, and all data is transferred
bits or one byte at a time.

The address bus is the second bus originating from
ie Z-80. It is made up of 16 lines, A15 through A0,
ith A15 the most significant. The address bus is used
» address memory for fetches of instruction bytes
ad operand data.

Let’s see how a typical instruction is executed. The
istruction LD A,(1024) loads the cpu A register
ith the contents of memory location 1024 (see Fig.
13). The sequence is something like the following:
1. FETCH:

(a) PC contents of 511 put on address bus.

(b) Contents of memory location 511 trans-
ferred from memory along data bus to cpu.

(e¢) PC is incremented by 1.

(d) Cpu decodes the instruction as a “LD A,
with memoty location” type and knows it
must fetch two more bytes for the memory
address.

(e) PC contents of 512 put on address bus.

(f) Contents of memory location 512 trans-
ferred from memory along data bus to cpu.

(g) PC is incremented by 1.

(h) PC contents of 513 put on address bus.

(i) Contents of memory location 513 trans-
ferred from memory along data bus to cpu.

(j) PC is incremented by 1.

2. EXECUTION:

(a) Cpunow has address for load (1024).

(b) Address of 1024 put on address bus.

(c¢) Contents of memory location 1024 trans-
ferred from memory along data bus to cpu
register A.

3. FETCH:
(a) Next instruction fetched.

The address bus was used to hold both the address

of the instruction being executed and the memory

location to be loaded into the A register. The data
bus transferred both the three bytes of the LD
A,(1024) instruction and one byte of data from loca-
tion 1024. During the fetch cycle the instruction
bytes were transferred, while the operand byte was
transferred during the execution cycle. Fetch and
execution of all instructions proceeds in this fashion.

Associated with the read of memory data was a
signal, RD. RD serves to let the memory know
whether data is to be read from or written to memory.
In this case all memory accesses were read. The bar

LD A,(1024) INSTRUCTION

ADDRESS BUS ADDRESS ADDRESS ADDRESS ADDRESS (NEXT
511 512 513 1024 INSTRUCTION)
DATA BUS CONTENTS CONTENTS CONTENTS CONTENTS (NEXT
OF 511 OF 512 OF 513 OF 1024 INSTRUCTION)
T0 CPU TO CPU T0 CPU T0 CPU
CPU ACTION DECODES SAVES NOW HAS READS (NEXT
FIRST BYTE SECOND 2ND, 3RD CONTENTS OF INSTRUCTION)
AS"LD A" BYTE BYTES = 1024 LOCATION
INSTRUCTION 1024 TO A
REGISTER
e I
I FETCH "1 EXECUTION FETCH —

Fig. 2-13. Typical instruction implementation.

26

Ez-80 THEORY

above the “RD” signifies that the signal is logically
false when the condition is met. When signal RD is
a zero (0 volts), then, a read is indicated.

Another signal, MREQ, stands for memory request.
It is a zero only when a memory read or write is being
performed. MREQ is active (0), then, four times in
the above example—three times to fetch the LD
A,(1024) bytes, and once to transfer the contents of
memory location 1024,

The WR signal is active (0) when a write is being
done to a memory location. Execution of LD (1024),A
writes the contents of the cpu A register to memory
location 1024 and WR (and MREQ) is active during
the write.

The last control signal associated with memory and
i/o is IORQ. IORQ stands for I/O Request and is
used to signal external i/o logic that an i/o operation
is being performed. In the case of the EZ-80 the i/o
operation will transfer data between a cpu register
and the 8255 programmable peripheral interface.
IORQ is active (0) only when an i/o instruction is
executed. When an RD (ReaD) instruction is per-
formed, 8 bits of data are read from the PPI into the
cpu A register and IORQ is active. The PPI also uses
address lines AO and Al and transfers data over the
data bus D7-D0. When a WR (WRite) instruction
is performed, 8 bits of data are transferred from the
cpu A register to the PPI. We'll discuss i/o in detail
in the i/o chapter of this section.

Reading and writing to memory and i/o from the
cpu, then, is handled by putting the address on the
address bus A15-A0, activating the proper control
signals of RD or WR and IORQ or MREQ, and trans-
ferring the data along address bus D7-D0.

The Z-80 signals include other ones which are not

Vee
)
l 280
' cPU
Vo | —— 2
J— }—~ RESET TIME
0 VOLTS
N —
ONIOFF TIME —>
SWITCH T0 ON

Fig. 2-14. Cpu reset operation.

used in the EZ-80. RFSH indicates that the refresh
register R address is available on the address lines.
As we do not have dynamic memories in the EZ-80,
this signal is not required. M1 indicates that a fetch
cycle of an instruction is being executed in the cpu.
This signal is not required in a small configuration.
BUSRQ and BUSAK (Bus Request and Bus Acknowl-
edge) are used to implement transfer of data between
i/o devices and memory without going through the
cpu, in a direct-memory-access (dma) scheme. This
is useful for large-scale systems and high-speed i/o
devices. HALT indicates that a halt instruction has
occurred. A halt instruction may be used for inter-
rupts, but we will not use it in the EZ-80. WAIT is
an input that allows the Z-80 to be used with mem-
ories (or i/o devices) that operate much more slowly
than the cpu speeds. The EZ-80 matches the memory
to cpu clock rates to make this unnecessary. INT
(Interrupt) is an input that signals an external in-
terrupt has occurred. In the EZ-80 we are using only
the NMI, or non-maskable interrupt, and no other
external interrupt.

The RESET signal is an input signal to the Z-80
that indicates that power to the Z-80 has just been
turned on, or that the cpu should be reset. Reset
causes the Z-80 to clear the PC register, and, after a
short pause, start execution from memory location 0.
Certain other cpu functions are also initialized when
RESET becomes active. An input like RESET is ob-
viously necessary to allow the cpu to start from a
known point. When power is first turned on, the volt-
age at pin 26 is near 0. It gradually builds up as the
capacitor becomes fully charged. The voltage over
time is shown in Fig. 2-14. This scheme is used to
start from a time when the power supply voltage is
a stable value.

r———
|
2-80
CPY
12 gl
MC4024 —of NMI
100 Hz
100 Hz l
10 MS “ “—
|

Fig. 2-15. Non-maskable interrupt,

HE CPU SECTION

27

The NMI signal is generated by the second half of
he MC4024 chip. This signal is another square-wave
ignal that has a frequency of about 100 Hz (100
ycles per second). The NMI input causes a non-
raskable interrupt to occur every 1/100 of a second
vhen the NMI square wave swings from high to low
see Fig. 2-15). A “non-maskable” interrupt simply
neans a signal that cannot be disabled or ignored.
lvery time the signal (high to low) occurs, it causes
n interrupt to the cpu. The effect of the NMI inter-
upt is to cause the cpu to stop execution of the cur-
ent instruction and jump to location 102 decimal.
Vhy location 1027 Only because location 102 has
ieen defined as the NMI interrupt location (certain
ther locations lower than 102 are dedicated to other
iossible interrupts which are not implemented in the
Z-80).

Memory location 102, then, must provide an NMI

interrupt handling routine, which is a series of in-
structions to process an NMI interrupt, What is the
NMI for? Usually the NMI is used to handle catas-
trophic conditions in a microcomputer system, such
as power failure. In the EZ-80 we are using it to count
every pulse that occurs. By calibrating the pulse rate
we can implement a real-time clock that provides a
count proportional to elapsed time. This can then be
used for time of day or other functions that require
updates at periodic rates.

When an NMI comes in, the cpu stops execution of
the current instruction, stores the instruction location
in the stack, and transfers control to location 102. The
program segment at 102 adds one count to the elapsed
time, performs some other overhead chores, and re-
turns to the interrupted instruction. We'll discuss
the NMI interrupt further in the software chapter
of this section.

CHAPTER 3

The Memory Section

We'll investigate the interaction of the memory and
cpu in this chapter. The EZ-80 uses two types of
memory: a 2758 erasable programmable read-only
memory (EPROM) and a 6810 random-access mem-
ory (RAM). The sequence for reading and writing
to memory is discussed in this chapter, along with the
special requirements for programming and erasing
EPROM.

EZ-80 MEMORY MAP

In Chapter 2 we discussed the address bus of the
Z-80 and the inherent addressing limitations of a
16-line address bus microprocessor. As the memory
bus has only 18 lines, only 65,536 memory locations
can be addressed without special banking schemes
or some other way to “switch” from one set of memory
to another. As 65,536 bytes of memory will hold
30,000 instructions or so, the inherent limitation of a
16-line address bus is really not very limiting.
~ One of the chief design criteria in the EZ-80 was
reasonable cost. To reduce the number of components
used, memory was limited to 1024 bytes (optionally
2048) for the program and another 128 bytes for
storage of data and stack area. The 1024 bytes are
not an unreasonable amount of memory for a pro-
gram area. An unlimited number of applications can
be programmed in 1024 bytes or less. In addition, the
design of the EZ-80 makes expansion to a 2716
EPROM chip possible, doubling the program storage
area. This should not be necessary for most EZ-80
projects, and only one of the projects in this book
(the Music Synthesizer) requires the larger (and
slightly more expensive) chip.

The memory map of the EZ-80 is shown in Fig.
3-1. The unused locations in the 65,536 maximum
memory size are shown in shaded areas. Locations 0
through 1023 are the memory locations of the 2758
EPROM chip. Above the 1024 locations for the 2758
are another 1024 locations for expansion to a 2716

28

EPROM chip. Locations 2048 through 2175 are mem-
ory locations of the 6810 RAM chip. The remaining
locations are unused.

The locations designated are written both in deci-
mal values and in hexadecimal form. Hexadecimal
format is a shorthand way of writing binary numbers.
Instead of writing 0000 0011 1111 1111 for memory
location 1023, we've used the hexadecimal 03FF. To
convert from binary to hexadecimal, group the binary
digits into 4-bit groups. Now, each 4-bit group can
be changed into a hexadecimal digit of 0, 1, 2, 3, 4, 5,
6,7,8 9, A, B, C, D, E, or F. If the 4 bits are 0000
through 1001, substitute 1 through 9 for the binary
value. If the 4 bits are 1010 through 1111, substitute
the symbols A through F. Hexadecimal values can
easily be converted into binary values by reversing
the process (see Fig, 3-2).

Hexadecimal numbers are really numbers ex-
pressed in base 16, just as binary numbers were ex-
pressed in base 2. The same scheme of positional no-
tation is used for hexadecimal as is used in decimal
or binary, except that in hex the positions represent
powers of 16 (see Fig. 3-3). We'll be working with
hex numbers throughout the book, but we’ll refresh
your memory about how to use them from time to
time, so don’t feel dismayed if you can’t immediately
convert from one system to another.

ADDRESSING MEMORY

How do the memory chips know when they are
being addressed by the cpu? Refer to Fig. 3-4, which
shows the cpu and memory connections. Let’s con-
sider the 2758 first. The 2758 has 10 address inputs,
A9 through AQ. This allows from 00 0000 0000 through
11 1111 1111 (hex 000 through 3FF) separate loca-
tions to be addressed, or a total of 1024. So it appears
that to address any of the 1024 locations in the 2758,
we need only to put the proper address on address
lines A9 through A0 of the cpu address bus. That

'HE MEMORY SECTION 29

DECIMAL HEXADECIMAL L
LOCATION LOCATION e 8 £ .
0 0 LU
@0 w > [F-3
1024 EPROM - - - -
BYTES (2758) 4 F A C (HEXADECIMAL)
1023 03FF
EPROM 1024 0400
avEl 4| (Expansion - C=12x160 = 12
A=10x16 = 160
2716) 2047 07FF F=15x162 = 3840
128 BYTES{ [810 RAM s 0800 4= 4x168 = 16384
20396 (DECIMAL)
2178 0880 Fig. 3-3. Hexadecimal notation.
T g
UNUSED] erm—
[
A5 | al5
Al4 ALY
AL3 A3
AL2 A2
65535 FFFF Ml al
Fig. 3-1. EZ-80 memory map. 39
280 23 38
. . CPU 3
vould be true if the 2758 were the only device in the 22 K
ystem that was addressed by these lines. However, " :
he 6810 RAM uses address lines A6 through A0 to A3
ddress its 128 locations (000 0000 through 111 1111, i L
0 through 7F hex, or 0 through 127 decimal). If the o
pu addressed memory location 100, both the EPROM s 2
nd RAM would believe that their 101st (don’t forget ot [
scation 0) location were being addressed. e I7
Because of this addressing conflict, we need some ot 2
dditional address lines to select either EPROM or
\AM. The memory map of the system defines the T
IPROM area as locations 0 through 1023 (0 through Ve ol
al, o 0
BINARY ~ DECIMAL HEXADECIMAL ul 03 [
0000 0 0 I R I
0001 1 ar-ZLage EPROM 16
0010 2 2 OR2116) g7 |7
0011 3 3 ey —2d CEpam 3 A0 ?
0100 4 4 Al0 4 ag 2758 e
0101 5 5 ALG (2718) a3
0110 6 6. A
0111 7 7 12 M
1000 8 8 T 0
1001 9 9 25|83
2
1010 10 A Ve "
1on 11 B 2 y)
1100 12 ¢ 13 | Ve D0 [5—
1101 13 D o o[
1110 14 E 03 2
__“L_ls_____i__ w1 w6810 gg !
RAM
1011, 1001 0010 BINARY 10| 128x8 oo
Valo 00 \ Moo 1 iz
B9 2 HEXADECIMAL wreq 4 551 3 n
——— —— e — A2 20
Foo7 A HEXADECIMAL Ay IE
Foor R a0 a5 M8
111 0111 1010 BINARY 124t5 %
a A 5] oot
0S5

Flig. 3-2. Binary, hexadecimal, and decimal conversions. Fig. 3-4. Memory in the EZ-80 system.

30

Ez-80 THEORY

3FF hex) and the RAM area as locations 2048 through
2175 (800 through 87F hex). What are the differences
between the addresses for each of these areas? One
difference is shown in Fig. 3-5. It appears that address
line A1l is never a one for an address in the EPROM
area and always a one for an address in the RAM
area. We can use this fact to advantage to select
either RAM or EPROM.

This selection is accomplished by connecting All to
pin 10 of the 6810 RAM. Pin 10 is Chip Select 0 or
CS0 on the 6810. Whenever the signal on pin 10 is true
(1), part of the requirements for selecting the 6810
RAM are met. What are the other requirements? The
6810 has five other select inputs CS1, CS2, CS3, CS4,
and CS5. Four of these must be false (0) for the
chip to be selected: CSI, CS2, CS4, and CS5. The
other must be true: CS3. By tying these select inputs
to ground (0) or +5 volts (Ve or 1) we make these
inputs always have the proper state for selection so
- that only A1l (CSO) selects the chip. By the way,
many memory chips have only one chip select. The
six on the 6810 are simply there as a convenience to
the system designer. Normally, external logic would
detect when the range of locations for the chip was
being addressed and then enable a select signal for
the chip. This logic would involve rejecting every
memory address on the address bus except for the
128 locations (in this case). Because we have a mini-

DECIMAL HEXADECIMAL BINARY

MEMORY MEMORY MEMORY

ADDRESS ADDRESS ADDRESS
0 0000 0000000000000000
1 0001 0000000000000001
2 0002 0000000000000010

EPROM .)
1022 03FE 0000001111111110
1023 03FF 0000001111111
1024 0400 0000010000000000

EPROM .) .

EXPANSION

2716)) . .
2047 07FF 0000071111111
2048 0800 0000100000000000
2049 0801 0000100000000001

RAM . . .
2174 087E 0000100001111110
275 087F 0000100001111111

ADDRESS 1

LINES: 5432109876543210

All = 0 FOR EPROM
* 1 FOR RAM

Fig. 3-5. Selection of RAM or EPROM.

mum system with only two memory devices, we can
use address line A1l only to select either the EPROM
or RAM.

When we want to read a location from EPROM,
then, we can execute an instruction such as LD A,
(200), which will load the contents of EPROM loca-
tion 200 into the cpu A register. To read a location
from RAM, we can execute an instruction such as LD
A,(2050) which will load the contents of RAM loca-
tion 2050 into the cpu A register. By mapping the
locations of RAM as 2048 through 2175, we refer to
them by the map address just as conveniently as by
specifying the “64th location of the RAM.”

Because the address bus Al5 through A0 is used
not only for memory, but for i/o addresses, we need
another qualifier for selecting memory. The MREQ
signal from the cpu goes to a 0 (0 volts) whenever a
memory location is being read from or written into.
To differentiate between an i/o address and a memory
address (and prevent reading a memory location
when we wanted data of an i/o device), MREQ is
used to select the EPROM (pin 18) and RAM (pin
11).

Now every time we perform a memory reference
instruction such as LD A,(128), we will get only
a memory location and not an j/o device that has
address 128. Conversely, if we perform an i/o instruc-
tion such as IN A,(128) we will read a byte from
i/o device. number 128 and not from memory loca-
tion 128, as MREQ will remain true (1) during the
entire execution portion of the IN(put) instruction.

DATA TO AND FROM MEMORY

The data bus, D7 through DO, is used to transfer
data read from memory into the cpu. It is also used
to write data into the 6810 RAM. Data can’t be writ-
ten into the 2758, of course (at least during program
operation). The data bus is a bidirectional bus. Data
flows both ways—from cpu and to cpu. The cpu al-
ways knows the direction of the flow. During an
instruction fetch, for example, data is being read from
memory into the cpu for instruction decoding. Once
the cpu has read the one to four bytes of the instruc-
tion, it goes into the execute portion of the instruction
and may read or write a byte (or two) to or from
memory. Because the data bus is_bidirectional, the
cpu generates an RD (read) and WR (write) signal
to signal memory and i/o devices whether a read or
write is occurring. The RD and WR, then, are other
qualifiers that must be added to the memory logic.

The WR signal from the cpu goes into pin 16 of
the 6810 RAM. The specifications of the 6810 are such
that a write memory operation is a zero, and a read

IE MEMORY SECTION

31

.emory operation is a one. This fits in nicely with
ie state of the cpu WR signal, which is a zero any
me a write is to be performed and a one otherwise.
The WR signal is not used in the 2758 EPROM.
either is the cpu RD signal. The reason for this is
at every time the EPROM is being addressed, the
seration must be a read, as writing is impossible.
dding the qualification of a read or write signal
r the 2758 EPROM would be an extraneous condi-
m.

Z-80 READ AND WRITE CYCLES

Let’s take a look at the sequence of read and write
serations performed by the Z-80. Fig. 3-6 shows the
ad operation during the fetch of the first one or
70 of the instruction bytes. Each T period is 1 micro-
cond long, so the entire operation takes 4 micro-
conds. The first action taken by the cpu is to put
e address (from the PC) onto the address bus lines
L5-A0. (The MI signal indicates that this is the
p code” fetch, the first one or two bytes of the in-
ruction.) The cpu then causes MREQ and RD to
» to 0, indicating to external logic that a memory
ad is being made. From this point on, the memory
iing addressed has about 1% T states to respond, or
out 1% microseconds.

The memory responds as follows: It knows by the
REQ that the cpu wants to read or write one byte
data via the data bus. If the memory is the 6810
AM, it knows by the state of the WR signal whether
write (WR=0) or read (WR=1) is required.
All is true (if the cpu is reading an instruction
te from the 2048-2175 area), the 6810 RAM CS0 sig-

T——— Ml—- 4 MICROSECONDS ————————

—Tl [13 T4

!
Llllll7

CONTENTS OF PROGRAM
ADg{'}sESS — COUNTER PUT ON-:
ADDRESS BUS

W || [
] | I
m] |

DATA DATA
FROM
BUS [MEMORY
/

MEMORY (EPROM) RESPONDS
WITH FIRST BYTE (OP CODE)

Fig. 3-6. Z-80 op-code fetch.

f———— M = 3 MICROSECONDS

T2 ——f—T3

ADDRESS CONTENTS OF PROGRAM COUNTER
BUS PUT ON ADDRESS BUS
MREQ
RD
DATA DATA
BUS FROM

MEMORY]

/
MEMORY (EPROM) RESPONDS WITH
REMAINING INSTRUCTION BYTES

Fig. 3-7. Z-80 remainder of fetch cycle.

nal is true and the RAM is selected. If All is false,
the OE signal of the 2758 is false and the EPROM is
selected. (As it happens in the EZ-80, instruction
bytes are always read from the EPROM, although in
other systems they could be read from either EPROM
or RAM.)

In the general case, if the chip is selected (MREQ
=0 and All=1 for the 6810, or MREQ =0 and
All =0 for the 2758), the memory chip looks at the
address present on the address lines. If the chip se-
lected is the 2758 or is the 6810 with a read, the 8
bits in the memory location specified on the address
lines are output to the data lines D7 through DO, At
the end of T2 the cpu reads the bits of the data lines
into an internal register for decoding.

Subsequent reads of remaining instruction bytes
are done in pretty much the same fashion, except
that only three clock cycles are used, as shown in
Fig. 3-7. (The “op code” fetch of the first one or two
instruction bytes is longer to allow the R(efresh) reg-
ister to be sent to system dynamic memories, if the
system has any.) Reads of operands, such as in the
instruction LD A,(2049), which loads the byte from
memory location 2049 into the A register, are per-
formed as shown in Fig. 3-7. In this case the address
on the address bus represents not the PC, but the
address of the operand from the instruction.

Writes to memory are done only during the execu-
tion portion of an instruction, so the “op code” fetch
is not a consideration. The write cycle starts off sim-
ilarly to the read, as shown in Fig. 3-8. The address
of the memory location to be written into is put on
the address bus A15-A0. Signal MREQ is activated
(brought to zero). Shortly after, the cpu outputs the
data to be written to memory onto the data bus

32

EzZ-80 THEORY

—————— M = 3 MICROSECONDS
n—f—n——oF—mn
L4
ADDRESS CPU OUTPUTS ADDRESS OF
BUS MEMORY LOCATION TO BE WRITTEN
WREQ
WR
DATA CPU OUTPUTS DATA T0
BUS BE WRITTEN INTO MEMORY

Fig. 3-8. Z-80 write cycle.

D7-DO0. At this time the memory starts to actually do
a read of the specified location, However, signal WR
is brought to a zero, and the data on D7-DO0 is
written into the specified memory location instead, as
the memory chip detects the transition of WR from
a one to a zero.

Z-80 INSTRUCTION EXECUTION

The complete instruction execution is a combina-
tion of read and write cycles. The cycles for an “LD
(2049),A” instruction are shown in Fig. 3-9. During
the first read cycle the first byte of the “LD (2049),A”
is read into the instruction decoding register of the
cpu. The cpu recognizes that two additional bytes
are to be read to complete the instruction. Two addi-
tional reads are done to get instruction bytes 2 and 3.
The cpu now has the address 2049 of the instruction
and writes the contents of the A register into location
2049 by performing a write cycle. The next instruction
is then accessed. Note that in the first three reads the

13 MICROSECONDS

address on the address bus was the contents of the
program counter. The PC was incremented by one for
each read, to read in the next instruction byte. During
the write cycle the address on the address bus was
2049 and the data transferred from the cpu was the
contents of the cpu A register.

During program execution the address and data
bus are very active with read cycles occurring for
every byte of an instruction and write cycles occurring
every time an operand is transferred from the cpu to
a memory location. The rate of the cycles is hundreds
of thousands of times per second.

THE 6810 VERSUS THE 2758

The 6810 RAM is somewhat more simple to under-
stand than the 2758, If data is read from or written to
the 2048-2175 (800-87F hex) area of memory, All
is a 1, MREQ =0, and the 6810 reads or writes one
byte from the location it finds on address lines A7-A0
(0-127 decimal, or 0-7F hex).

The 2758, however, has some complicating signals
that are not on the RAM chip. Let’s look at them in
detail. As the data is only output (read) data, the
data lines are designated O7-00 for “output.” Inputs
A9-AO0 are the address lines from the cpu.

During operation as a read-only-memory chip, pin
21 (Vpp) is +5 volts, as is the main power pin, pin
24 (Vee). Pin 12 is always ground. During program-
ming, however, pin 21 is connected to a higher voltage
supply of +25 volts. This higher voltage is required
to write data into the EPROM during the program-
ming process.

Pins 18 and 20 are also “dual-purpose” pins and are
used for different things during programming and
normal operation. (Pin 19 is always a zero for the
2758, but would be address line Al0 for the 2716
chip, which could be used to expand the EPROM to

M1

M2 'l M3

— 1

M4

Augﬁgss PC I PC JMEMORY ADDRESS

o B I e | | B

—

Fig. 3-9. Z-80 Iinstruction execution.

I N R 1 |

WR] I
DATA D
BUS
\ \ / /
0P CODE MEMORY ADDRESS DATA FROM CPU
FROM INSTRUCTION BYTES FROM INSTRUCTION TO BE WRITTEN

TO MEMORY

HE MEMORY SECTION

33

ouble the size.) Pin 18 is zero for a read operation
nd can therefore be tied to the MREQ input which
oes to a zero when a memory operation, which must
e a read, is requested of the 2758. During program-
ling, pin 18 is used to input a pulse that causes a
iemory location in the EPROM to be programmed.
in 20 is a zero during a normal read, but may be a
ne (+5 V) during the program mode. Normal func-
ons of the 2758 pins when the 2758 is installed in a
Ircuit to act as read-only memory, then, are:

Vep (21), Voo (24), Power lines

___onp (12)

OE (20) Address line All to en-
able chip

MREQ (18) Memory request to enable
chip

AR (19) Always 0

PROGRAMMING THE 2758

How does one program the 2758”7 A good question.
irst, we need a little history of EPROMs. The
PROM, which is an erasable programmable read-
nly memory, was preceded by ROMs and PROMs.
A ROM is a read-only memory. It is custom fabri-
ated at a semiconductor manufacturer to hold pro-
rams or data or both. The initial cost to “design-in”
1€ program or data is hundreds of dollars, but once
1e device has been designed, the individual chips
re very inexpensive in quantity. The contents of
1e ROM can never be changed (unless a hammer
: used) and ROMs are typically used for high-volume
pplications such as hard-wired electronic equipment
r consumer electronic items (an example would be
1emory for a washing machine controller).

Because ROMs are suited for high-volume applica-
ons, there was and is a need for a memory device
1at could be programmed “in the field” without mak-
1g up an expensive production run. The PROM
programmable read-only memory) fits this require-
1ent. It can be electrically programmed to “burn-in”

a set of instructions or data. Once burmed-in, how-
ever, the contents are irreversible. A new PROM must
be used in place of one with faulty data.

The EPROM (erasable programmable read-only
memory) is (almost) the best of all worlds. Not only
can it be field programmable, but it can be erased
with ultraviolet light. If a user erroneously enters
programs or data into an EPROM, he or she can
erase it and start over, saving the cost of new PROMs.
The EPROM is an ideal device for experimentation
with programs or data that will not change too quickly.

Early EPROMs were difficult to program as they
required that many hundreds of passes be made
through each of the EPROM locations to burn-in
data. As a result, programmers, which are devices to
accomplish this were quite elaborate (typically a
microcomputer may be used to drive the programmer
through the hundreds of cycles). The 2758 and 2716
EPROMs, however, are much simpler to program. To
change a location in the EPROM the following steps
must be followed:

1. Put the address of the location on inputs A9-AO.

2. Put the data to be programmed on inputs D7-D0.

3. Put +25 volts on pin 21 (Vep) and +5 volts or
0 volts on pins 24, 20, and 2.

4, Pulse pin 18 by a pulse that goes from 0 to +5
volts and back to 0 and lasts about %o of a second
(50 milliseconds).

This procedure is repeated for every location to be
programmed. Because of the simple requirements for
programming, a programmer for the 2758 and 2716
can be made very simply and inexpensively. Later in
this book we will see how a programmer can be made
and offer some alternatives to making a programmer
for entering programs into the 2758 and 2716.

Erasing the 2758 or 2716 is accomplished by ex-
posing the chip to strong ultraviolet light. Inexpen-
sive ultraviolet lamps are available for this purpose.
The erasing process is very simple and will be de-
scribed under construction of the programmer.

CHAPTER 4

The IO Section

The interface of the Z-80 microprocessor and 8255
programmable peripheral interface (PPI) is dis-
cussed in this chapter. In a sense the PPI is like a small
microprocessor in itself. It accepts commands from
the Z-80 and handles the tasks of inputting and out-
putting data from 24 i/o lines. The logic associated
with the LED display, keyboard, input lines, and out-
put lines is also discussed here.

THE 8255 PPI

Fig. 4-1 shows the i/o section of the EZ-80. The
PPI acts as an intermediate buffer between the Z-80
cpu and the outside world of the LED display, key-
board, input lines, and output lines. The purpose of
the PPI in the EZ-80 and in the general case is to
buffer the i/o data to match the speed and signal
characteristics of the outside world to the Z-80.

In the EZ-80 configuration the PPI consists of four
registers similar to the registers in the Z-80 cpu. Each
register is 8 bits wide. Three of the registers connect
to three sets of eight input/output lines as shown in
Fig. 4-2.

The cpu can read or write to each of the four reg-
isters in the PPI by an RD (read) or WR (write) in-
struction. Executing an RD A,(2) instruction, for ex-
ample, reads register 2 of the PPI and transmits the
8 bits of data in the register to the A register of the
Z-80. Executing a WR (0),A instruction writes the
contents of the cpu A register into register 0 of
the PPI.

The four registers are addressed by addresses of
00, 01, 10, and 11. Two address lines come into the
PPI: Al and AO0; and these two lines are all that are
required to hold the 2-bit address to specify the PPI
register involved. Ordinarily, in a larger-configuration
microcomputer there would be a conflict with this
type of addressing scheme. The conflict would be of
a nature similar to that of using the same address
lines to select memory locations. A larger microcom-

puter would have several i/o devices and more than
two address lines would be required to select the
proper i/o device. In the EZ-80, however, the only
i/o device is the PPI, and it is sufficient to use only
Al and AO for addressing, Any time an i/o instruction
(RD or WR) is executed, the program must be talk-
ing only to the PPI and no other device. To differen-
tiate between memory and i/o communication the
IORQ signal is connected to the PPI (pin 6). The
IORQ is a zero only when an RD or WR is executed.
The direction of transmission is decoded by the PPI
from the WR and RD signals (pins 36 and 5).

Let’s take a more detailed look at an i/o operation
from the cpu signal viewpoint. The signals during an
RD instruction are shown in Fig. 4-3. When an RD
is executed, the cpu first puts the address of the ifo
device on the address bus lines A7-A0. The format of
the i/o instruction specifies only an 8-bit i/o address,
so the number of devices that may be addressed are
0000 0000 through 1111 1111, or 256. In the EZ-80,
only four addresses are used: 0, 1, 2, or 3.

Shortly after the address is put on the address bus
the cpu “brings down” the TORQ and RD lines to
zero (0 volts). This is interpreted by the PPI as an
i/o operation in general and a read. The PPI looks at
the two address lines of Al and A0 to determine which
one of the four registers is to be read. It then puts
the contents of the selected register onto data bus
lines D7 through DO. In the middle of the third T
cycle, the cpu inputs the contents of the data bus
into the A register. As in the case of memory, the
time between the initial IORQ and RD and the
strobing of the data into the A register is there for
two reasons. First, the cpu needs the time to se-
quence through its internal operations. Second, the
interval gives the external device time to respond.
Even in the microprocessor world, events take dis-
crete amounts of time.

A write operation for a WR instruction is similar
(see Fig. 4-4). The address and IORQ are active as

HE I1/0 SECTION 35
—— Ver ljr
WRE] WRED % 1 y
““3,}; Pﬂe B venrea B ﬁ_L\ T 1, 1, HP5082.7404 P
5 4 r]
AWIE Xilﬁs R L pag 2 = g = Ei HEEH ?r?gsis PIN NOS
el = : 02 c . NO
2;2 o R —&d & e |2 E}‘:’:t 8 m lzoe i ARE OF L50. NoT
A2 i 8
ALl e All w5 P [i L > %l e - 330 01 RESISTOR
Al0 " A0 25 P — = | ETWORK K. 1
MODE 0 :
:: 23 135 uocgnmm . 1;20 MC14511 : 12 2773 "8 578
2 :g € PAz z z ¢ DI%IEVI:H 1
e K 1 05 ¢
Py 10
Ix oo 7 d
. Hu eB7 (2w - el
o A0 pus (2 ne Voo —H BT i
o oNo— L e
05 Voo ~ IT GND
3 i
PS5 - 0uT1
gf pae 12 +1'}3 < T 13
po p2— 84 i —o 0UT2
] pe3 |21 4 5 o 0uT3
poz |22 12 P R 1L — o ouT4
. par 2 § PS>t o OUT 5
T pBo |18 W I>s — g — 0UT§
il """'7&&711
ey 10 2t 11 o INL
pes AL 4 D6 413 N2
=<
eos |12 61 A 5
-} ©IN3
pea 13 8 <2 IN4
~<d
PC3 v} 10, 1 11
<} NS
3] oo Lomccmee L n 1K RESISTOR
310 506 74LS05 KB PLUG NETWORK NO. 2
gf bz V“l_;‘r ————— 1’% i P w °
3 03 Al >0 a4 Ve
79| ¢ 51 16 2 M 1
28 gg M= Ao JTHED
7 16 9! 8 3 jun
o7 ez 5 A3 N > RS i N 3 I, NC
PC1 A1z — NN AN LH
pep |4 N —o—|13: S0ty B
RESET GND {
37(_7-{ ———— - 5
§
: 7
Fig. 4-1. Input/output in the EZ-80 system.
M = 3 MICROSECONDS ——T
1) 1 T2 -+ 13
‘ REGISTER |, EIGHT LINES TO
] OUTSIDE WORLD [
ADDRESS | | 1/0 ADDRESS FROM
0 REGISTER 1 —— SIS?STII}EINVE(S)JPD BUS RD INSTRUCTION
1-80 -
o EIGHT LINES TO 10k
LINES T
REGISTER 21— OUTSIDE WORLD
RD
REGISTER 3 DATA
INTERNAL BUS
CONTROL y
PROGRAMMABLE DATA FROM
PERIPHERAL INTERFACE 1/0 DEVICE
(8255) (PP))

Fig. 4-2. PPI registers.

Fig. 4-3. Z-80 RD instruction cycle.

36

EZ-80 THEORY

in the read. The RD signal remains inactive, however,
and the WR signal is brought to zero. Before the WR
becomes active, however, data from the cpu A reg-
ister is put onto data bus lines D7 through DO0. The
WR signal effectively strobes the data into the appro-
priate PPI data register.

Each of the four PPI registers, then, can be read
from or written to by the proper i/o instruction that
specifies an address of 0, 1, 2, or 3. The first three reg-
isters are associated with three sets of eight lines that
go to the outside world. What is the purpose of the
fourth register? The fourth register is a control reg-
ister that holds the mode control byte for the PPI.

The PPI is a general-purpose device. It is meant to
be as versatile as possible in allowing a microcom-
puter systems designer to build a microcomputer with
a few parts that can do a variety of tasks. The PPI
may be set up in several different modes. Mode 0 is
“basic input/output,” mode 1 is “strobed input/out-
put,” and mode 2 is “bidirectional bus.” All three have
their uses in various systems. The “strobed” mode
allows “handshaking” sequences between the PPI and
other devices. The “bidirectional” mode allows each
line to be used for transmitting data in two directions
between the PPI and other devices. The mode used
in the EZ-80, however, is the “basic input/output”
mode, or mode 0.

In mode 0, lines PA7-PAO can be set up to be all
inputs or all outputs, but not a mix. Lines PB7-PB0
can be set up to be all inputs or all outputs. Lines
PC7-PCO are further subdivided into two sets of
four each and each set can be either inputs or outputs.
In the EZ-80 we have chosen the following com-
binations:

PAT-PAO All Outputs Address 0
PB7-PBO All Outputs Address 1
PC7-PCO All Inputs Address 2
M = 3 MICROSECONDS
nT—t—Tn——T"0
®
ADDRESS 1/0 ADDRESS FROM
BUS WR INSTRUCTION
iORQ
. r
DATA DATA FROM CPU
BUS REGISTER TO PPI

Fig. 4-4. Z-80 WR instruction cycle.

LD A,89H
0UT (3), A

; LOAD CONTROL WORD
; SET MODE 0, SUBMODE 3

EIGHT
REGISTER 0 3 OUTPUT LINES

EIGHT
REGISTER 1 —*‘8 ™ QUTPUT LINES

EIGHT

REGISTER 2 2 INPUT LINES

10001001
INTERNAL

CONTROL

Fig. 4-5. Mode 0 control word and configuration.

The first action that must be taken before perform-
ing input or output operations with the 24 lines of
the PPI is to program the PPI by sending out the
proper control word to the PPI control register. This
control word is stored in the control register and re-
mains there as long as power is applied to the PPI.
The control word for mode 0 and the above configura-
tion of lines is shown in Fig. 4-5, along with the actual
instructions.

Having output the proper control word to the con-
trol register of the PPI, the PPI is now ready to be
used to transmit data between the cpu and “outside
world.” The “outside world” is divided into four areas:
the LED display, the keyboard, input lines, and out-
put lines. The first two of these are dedicated lines
used for EZ-80 functions, while the latter two are used
to enable the EZ-80 to perform useful tasks of a gen-
eral nature.

1 10 4 6
c1 2 C3 c4
a a a a
fI |b i b tl Ib f| b
g g g g
e| |C e ceI |C eI C
d d d d
a b [d e f g
12 11 3 8 2 9\ 7

Fig. 4-6. EZ-80 LED dispiay.

HE 1/O SECTION

37

Ver
__________]
__ i 7437 HP5082:7404 wP—
i F S 3 g p NC
41
T 5 L2[2M] NOTE:
PAG . _~ THESE PIN NOS.
9 0z, a ¢ e ARE OF LED, NOT
pas }32 [{ > o1 3 8 2 9 7 SOCKET
12! 1 L IO v Y I) O I
PA __ﬁ*—L—w G >t [7 %00 RESISTOR
2 - NETWORK NO. 1
Fig. 4-7. LED circuitry. s T 1 i NETWORK
L [W SN PUSDN SOEpEY TP NRpE RS
MODE 0 16 MC14511 13 1z 31 L
110 CONFIG. 5 @
2 PA3) "
LED
€2 DRIVER 1

PAL

PAD
PB7
PB6

N
}ﬁ N Vi —H

1 Ve~
1

D5

a o

e
i
g

GND

THE LED DISPLAY

The LED display used in the EZ-80 is a garden
ariety four-digit display that can display four deci-
1al digits from 0000 through 9999. Each digit of the
ED display is made up of seven segments, as shown
1 Fig. 4-6. By lighting combinations of segments the
umbers 0 through 9 can be displayed. The LED
isplay used in the EZ-80 is a type of display called a
ommon-cathode type. All segments of the four digits
re connected in parallel and a common set of seven
nes, one for each segment, come out of the chip on
ins 12, 11, 3, 8,2, 9, and 7.

The LED circuitry is shown in Fig. 4-7. The four
nes labeled C1, C2, C3, and C4 connect to the cath-
des of each of the digits. When one of these lines is
t ground potential (0 volts) and at least one of the
node lines a-g is at +5 volts, current flows through
he diode, which then emits red light. From one to
aven of the anode lines can be at +5 volts during
his condition, so all seven segments can be illumi-
ated at one time (or only a portion), as shown in
'ig. 4-8.

No more than one cathode line can be at 0 volts
t one time, so that at any given time only one digit
; displayed on the four-digit display in one position
nly. How, then, do we display all four digits at one
ime? By rapidly alternating between one digit posi-
ion and the next. Every Yoo of a second, a new set
f inputs at a—g and a new cathode line is enabled.

ov
1
a b c d e f g
+5V 45V 0V 45V +5V 0V 45V

Fig. 4-8. LED operation.

All four digits are displayed every %s of a second. To
the eye this multiplexed display appears to be a single
display of four digits. Fig. 4-9 shows the signals re-
quired to display the number 1234 on the display.

Displaying any series of four digits on the LEDs,
then, resolves down into rapidly switching inputs to
the LED display. All that we must do with the PPI is
to ensure that every %o second a new cathode line
(C1, C2, C3, or C4) is enabled in sequence and put
out a new set of the seven segment lines at the same
time.

Switching the cathode lines is easy. The four cath-
ode lines are driven by the outputs of the 7437 chip.
This chip is a high-current inverter. It takes the output
of lines PA7-PA4 of the PPI and inverts them, chang-
ing a one to a zero and a zero to a one. The PPI alone
could not handle the current through the LEDs, so
the 7437 is used to provide more current drive capa-
bility. To output a zero to one of the cathode lines,
one of the upper four bits in the first PPI register must
be a one and the rest zeros. We can do this by per-
forming an output instruction to the first (address 0)
PPI register. First of all, the A register in the cpu is
loaded with the proper configuration of ones and
zeros. Next, a write instruction is executed to send
the contents of A to the register in the PPI. In the

abocdef gClC2C3C4 DISPLAY
01100001000 !
11011010100 2 1/25 SECOND
11110010010 3 15
01100110001 ki
01100001000 i
11011010100 2
11110010010 3 1iz5 SECOND
01100110001 H

i

\

REPEAT 1 = +5VOLTS

0= 0VOLTS

Fig. 4-9. Sample display timing.

Ez-80 THEORY

§=DIGIT1

4 = DIGIT 2

2 =DIGIT 3 ACTUAL DIGIT

1 = DIGIT 4 TO BE DISPLAYED
LD A23H ;OUTPUT 3 TO C3
OUT (0), A ; LIGHT 3RD DIGIT

Fig. 4-10. Output sequence for LED display.

example shown in Fig. 4-10, cathode C3 has been
enabled.

How do we enable the seven lines going to the seg-
ments of the display with only four lines from the
PPI? And why not use seven lines from the PPI in-
stead of four? The reason we avoid seven lines is
simply that we have 24 lines to use on the PPI and
would like to allocate them parsimoniously. The
MC14511 gives us the capability to use only four
output lines to generate the proper sequence of LED
segments.

What the MC14511 does is to take four input (out-
put from the 8255) lines, assume that they contain
the binary equivalent of 0-9, and convert the input
digit to the proper sequence of segments. The table
for doing this is shown in Fig. 4-11. Note that the
input values 1010, 1011, 1100, 1101, 1110, and 1111
are invalid inputs and produce no display at all. In
addition to translating from binary into segments,
the MC14511 provides additional drive current capa-
bility. The PPI by itself would not be able to meet
the current requirements of the LED display segment
inputs.

Several of the pins on the MC14511 are not used

(see Fig. 4-7). LT (pin 3) is a lamp test input that
can be used to test the operation of all segments. TT
is active when it is a zero, and is therefore kept at a

NUM- INPUT LINES OUTPUT LINES
BER TO MC14511 FROM MC14511
DCBA|abcdetf g
T 0000]1111110
' 0001 | 0110000
2 0010 1101101
3 00111111001
4 010070110011
S 0101 (1011011
5 011070011111
101111110000
2 10001111111
3 10011110011
fone} 1010 (0000000
101110000000
11000000000
11010000000
11100000000
111110000000

Fig. 4-11. MC14511 conversion.

logic 1 (Vec) for the EZ-80. The blanking input (BI,
pin 4) is used to blank or turn off the display and is
kept inactive by tying it to a logic 1 (V¢c). The LE,
or latch enable (pin 5), latches (stores) the input
into the chip. LE in the EZ-80 is always active (zero
or ground) and the segment outputs “follow” the
inputs. Pins 16 and 8 are +5 volts and ground re-
spectively.

The resistors in the resistor network limit the cur-
rent through the LEDs. This is necessary because the
circuit has very low resistance when a segment is
enabled. The resistors limit the current to the proper
value for adequate brightness.

THE KEYBOARD

The keyboard of the EZ-80 is a very simple affair to
keep costs of the project low. The keyboard and as-
sociated circuitry is shown in Fig. 4-12. Pressing any
key simply connects a row with a column. Let’s
see how this circuit works. When no key is pressed,
the inputs to PPI register 2 on lines PC2, PC1, and
PCO are Ve or about +5 volts, logic ones. When a
key is pushed, two lines are connected and the column
line associated with the key is connected to the row
line associated with the key.

The column line goes to one of three inputs in the
three lower bits of the PPI. The column line reflects
the state of the connected row output from the 741805
chip. If the output of the inverter for the row is a
zero (0 volts), then the input to the PPI will be zero;
if the output of the inverter for the row is a one (+5
volts), then the input to the PPI will be a one. To
detect a key depression, then, we can state that if the
key is pushed and the inverter output is a zero, then
the input to the PPI for the column associated with
the key will be a zero. If we make certain that only
one inverter output is zero at a time, then we can pin-
point the key by its row (inverter number) and col-
umn (bit position).

As an example of how this works, look at Fig, 4-13.
Key S8 is depressed and the two contact points are
connected. Assume that the key remains pressed for
a long period. If we make Al5 a one, and Al4, Al3,
and Al2 zeros, then only the output of the Al5 in-
verter is a zero; the remaining inverter outputs are
ones. The lines to the PPI connect only at S8, but
since the A13 inverter output is a one, the PC1 input
is also a one. PCO and PC2 are also ones because they
are connected to Vg only (see the table in Fig. 4-13).
Now we make Al4 a one and Al5, Al3, and Al2
zeros. The same situation applies as previously. The
inputs on PC2-PCO are all ones. Now Al3 is made
a one, and Al5, Al4, and Al2 zeros. The output of

HE I/O0 SECTION

|
8255 |
PP
MODE 0
o Clz)NFIG.

€2

Fig. 4-12. EZ-80 keyboard circuitry. pe2 116

PC1

PCo

he Al3 inverter is a zero. PC2 and PCO are ones as
iefore, but S8 connects PC1 with the output of the
113 inverter and line PC1 becomes a zero input. Now
112 is made a one, and Al5, Al4, and Al3 are made
eros. All ones are present on PC2-PCO0.

The only time in the above sequence that PC1 was
. zero was when A13 was a one. This approach holds
rue for all other keys pressed on the keyboard. There
vill be one and only one time that its PC input will
)e a zero—when its row inverter output is also a one.
Jy continually sequencing Al5, Al4, Al3, and Al2
nd observing the bits PC2-PCO0, a key depression
an be detected and the key number can be found
1y noting which of the bits is a zero and which of
he four row inverter outputs was a one.

This process is called keyboard scanning and is a
.ommon technique for detecting and decoding key-
oards. The reader can see that the principles can
ie applied to larger matrices than a four-by-three key-
roard. Again, however, to reduce costs we have elim-
nated a larger keyboard in favor of a decimal keypad.

The scanning in the EZ-80 is implemented by simul-
aneously enabling one of the Al5, Al4, Al3, or A12
iddress lines and reading in the state of PC2-PCO.
f all three low-order bits in the PPI third register are

+5V +5V 45V

ALS >

Al4 {>F -
o

A3 >c >

AL2 >

PC2 PC1 PCO

Al5 Al4 A13 Al2 PC2 PC1 PCO
1 0 0 0 1 1 1
0 1 0 0 1 1 1
0 o0 1! 0 10 1
0 0 0 1 1 1 1

Fig. 4-13. Keyboard key press example.

D1 1K RESISTOR
" 56 uLso§7 KB PLUG al 9 s NETV!U_R}_NOZ
o e t
:f§_3‘ Do (A M P TY 1 .
! ! b oo B 13 ©
a4 >0 16 2 R 12 |
,\ N . ; o Rt 8 71'61'
e S SO SENTER [BT Ne
pzAL >0 1104 SR 8
.. ! trr teaa-a
LB
5

[]
7
T

ones, then no key has been pressed. In this case, the
next address line is enabled and a new row is read.
If one bit of the three is a zero, then there is a key
depression and the key being pressed is found by
looking at the column number by finding the zero
bit of the three.

The key to the technique in the EZ-80 is that the
RD (read) i/o instruction puts the contents of the
cpu A register on address lines A15-A0 at the same
time that the read is done of lines PC7-PCO0. By put-
ting the proper value in the upper four bits of the
A register, we can select one address line of Al5, Al4,
Al3, and Al2 at the same time that data is read in
from PC2-PCO. The sequence for selecting Al3 is
shown in Fig. 4-14. First, the A register is loaded with
0010 0000. This value will go onto address lines A15~
A8 when the read is performed. Next, an RD (read)
is performed of PPI register 2 [RD A,(2)]. During
the time that the address (2) goes out on the address
lines A7-A0, the upper eight address lines Al15-A8
hold 0010 0000 and A13 is enabled. If any of keys S7,
S8, or S9 is pressed, the corresponding input bit will
be a zero. This sequence is repeated rapidly for all
four rows until a zero is found to indicate a key de-
pression. The actual instructions used are discussed
further in Section 3 of this book. They enable the en-
tire set of 12 keys to be tested once every 300 micro-
seconds or so.

OUTPUT LINES

The EZ-80 has six output lines that are not dedi-
cated to any internal task. They are general-purpose
lines used to provide an output of one or zero for
the outside world. The six outputs can be used indi-
vidually to control six on/off conditions such as relays
or lights. They can also be used together to provide
a 000000 to 111111 output, or 64 steps, each step with
a meaning to the outside world. Not too impressive?
We'll see how those six lines can do an amazing num-
ber of things in Section 3. The six outputs from the
six low-order bits of the PPI register 2 are buffered
by the inverters in the 74368 chip. This chip inverts

40

EZ-80 THEORY

LD A20H ; SELECT A13
RD A[2) ; READ KB ROW A13

A NOW CONTAINS:

7 6 5 4 3 2 1 0
1|z |N3[N) W5 ool loor alent 3

A REGISTER:

v

STATE OF INPUT LINES STATE OF PC2-PCO

(WILL BE DISCARDED {COLUMNS OF
FOR KEYBOARD KEYBOARD ROW
PROCESSING) AlL3)

Fig. 4-14. Keyboard scan example.

the signal in the PPI register, but, more importantly,
it provides higher current drive capability to drive

external devices.

INPUT LINES

The top five bit positions of the PPI register 3 are
used as input lines. External world inputs of on/off
conditions can be scanned rapidly to detect switch
closures or other applications. As in the case of the
output lines, the inputs are buffered by six inverters
on the 741.804 chip. The main purpose of these in-
verters is not for current drive, but to prevent out-
side signals from destroying the relatively expensive
8255. (The 74LS04 chip is about %o the cost of the
8255.) Section 3 of this book describes how the outside
world may be interfaced to the EZ-80 via the five input
lines.

CHAPTER 5§

Z-80 Assembly Language Instruction Types

In the next two chapters we’ll attempt to present
enough software description on the Z-80 to enable
the user to interpret the programs given in Section
3 of the book and to construct his or her own pro-
grams. This chapter will discuss what types of in-
structions are available in the Z-80. The next chapter
will discuss some of the addressing variations of the
instructions and how to interpret and assemble pro-
grams.

WHERE DO WE BEGIN?

One of the problems with the Z-80 instruction set
is simply that there are too many instructions! There
- are too many ways to do the same thing. If there
is one guiding principle to keep in mind in program-
ming the Z-80, it is this: There are many ways to pro-
gram a ta:k and few wrong ways.

The Z-80 instruction set has well over 500 separate
instructions. The instructions can be grouped into
several sets, however, so the job of cataloging them
becomes somewhat easier. Furthermore, any of the
instructions of the same type differ only in the cpu
register or bit position involved. In the following de-
scription we'll group the instruction set of the Z-80
into:

Loads

Arithmetic

Logical

Jumps, Calls, and Returns
Rotates and Shifts

Bit Set, Reset, and Tests
I/0

Miscellaneous

LOAD INSTRUCTIONS

Load instructions transfer 8 or 16 bits (one or two
bytes) of data between memory and t-e cpu registers,
or between cpu registers. We've already seen some of

41

these in examples. Historically, a transfer of data into
a cpu register was called a “load,” while a transfer of
data from cpu to memory was called a “store.” In the
Z-80, however, any movement of data between cpu
and memory is called a load. The abbreviation or
mnemonic of the load operation is “LD.” Every time
one sees an LD mnemonic, a transfer of data is in-
volved. Transfers of data in an LD involve copying
data into a cpu register or memory location. The orig-
inal source of the data remains unchanged. As an
example, suppose we load the cpu A register with
the contents of the cpu D register, as shown in Fig,
5-1. After the LD the contents of D have been copied
into A and the original contents of D are unchanged.
In this example, D was the source register while A
was the destination register.

The above example was a load between cpu reg-
isters. To load a cpu register with the contents of a
memory location, a load such as the one in Fig. 5-2
can be done. This load loads the A register with the
contents of location 2050 decimal (802H, where H
stands for hexadecimal). Note the parentheses around
the 2050. This is mandatory and indicates that the
load will be done with the contents of location 2050.
After the load, the contents of memory location 2050
remain unchanged. Notice that the order of the op-
erands is DESTINATION, SOURCE, the same as in the pre-
vious example.

Now suppose that we want to transfer data the
other way, from cpu register to a memory location.
The example in Fig. 5-3 shows the transfer of the
contents of the A register into memory location 2050
(802H). After the load, the contents of A remain
unchanged. The order, again, is DESTINATION, SOURCE,
with the destination in this case memory location
802H (2050 decimal).

In all of the above loads, the data transferred was
eight bits, or one byte. One byte may be moved be-
tween any two cpu registers or between any cpu reg-
ister and any memory location.

42 EZ-80 THEORY
LD AD (LOAD A REGISTER WITH CONTENTS OF D REGISTER) LD A32 (LOAD A REGISTER WITH 32)
BEFORE AFTER 00 1 1111 0] BYTEO(OP CODE)
A01110101 A (000 11 1 1 1] (CHANGED) 00100000]BYTEL@E

Dl0O0O11111 DO 001111 1] (UNCHANGED)

Fig. 5-1. Load from register example.

Another way to move data is with an immediate
load. In all of the above examples, data was moved
from one location to another. In the immediate load,
data is moved from the instruction itself to a register
or memory location. An example of this is shown in
Fig. 5-4, which loads the A register with a decimal

LD A(2050) (LOAD A REGISTER WITH CONTENTS

OF MEMORY LOCATION 2050)
BEFORE AFTER

AlL0101010 A1 110001 1] (CHANGED)

2049 T 2049 {
205001 1100011 2050 {1 1100 01 1] (UNCHANGED)
2051 2051

Fig. 5-2. Load from memory example.

32 (hexadecimal 20H). What is the difference be-
tween a move in which memory location 2050 holds
32 with an LD A,(2050) and a move of LD A,32?
The difference is in instruction length, related speed,
and ease of use.

The LD A,(2050) instruction is shown in Fig. 5-5.
It is three bytes long. The first byte is the operation
code, the encoded value that tells the cpu what type
of an instruction this is, how long the instruction is,
and so forth. The next two bytes are the 2050 address,
802H, in reverse order (well learn more about the
format in the next section). To execute the instruction
the cpu has to fetch the three bytes from memory
(three cycles), and then use the 2050 (802H) address
to load the contents of 2050 into A (another memory
read cycle). The LD A,(2050) has taken three memory
read cycles and three bytes of storage. The LD A,32
instruction, however, is two bytes long, as shown in

LD (2050)A {LOAD MEMORY LOCATION 2050 WITH

THE CONTENTS OF THE A REGISTER)
BEFORE AFTER
Af01010111 A0 1 0101 1 1] (UNCHANGED)
1 - 1 <

Fig. 5-4. Inmediate load example.

Fig. 5-4. The cpu fetches the first two bytes, decodes
the instruction as an immediate load, and stores the
second byte into the A register. Two memory read
cycles (for the instruction fetch) were expended and
only two bytes of memory were used to store the
instruction. The LD A32 saves two memory read
cycles and one byte of storage over the LD A,(2050).
Is this significant? Not so much these days, when
memory is inexpensive and cpu speeds are fast. But
if nothing else, the programmer does not have to recall
where the constant value of 32 was in memory. An

LD A(2050) (LOAD A WITH CONTENTS
OF MEMORY LOCATION 2050)
0011101 0JBYTEQ (OP.CODE)
0000001 0]BYTEL
00001000]BYTE2 2050 (802H)

[0 8]0 2] H

Fig. 5-5. Comparison of immediate and memory loads.

important format point: Note that the immediate data
is not enclosed by parentheses. Every time the source
data is in this format, the instruction uses immediate
data.

All of the above loads involved 8 bits, or one byte
of data. Sixteen-bit loads are also possible on the
Z-80. These loads may be from a cpu register pair to
two memory locations, from two memory locations to
a cpu register pair, or from immediate data to a cpu
register pair. Let’s consider the latter case, the case
in which a register pair is loaded with immediate data.

The register pairs, to refresh the reader’s memory,
are AF, BC, DE, and HL. As the IX, IY, and SP
registers are the same width, 16 bits, as the other
register pairs, they too fall in this category. The in-
struction LD HL,2050 will load the HL register pair
with 2050 decimal (802H), as shown in Fig. 5-6. An
example of an immediate load of the IX register is
shown in the same figure. LD IX,0FH loads the IX
register with the immediate value of FFH, or 255
decimal. Note that in both cases no parentheses were

2049 2049 used around the immediate data.
ggg‘l’ 11111111 ggg? 0101011 1) (CHANGED) Register pairs may also be loaded from memory or

stored to memory. When a register pair is loaded or
stored, two memory locations are involved, as 16 bits
of data must be transferred. The instruction shown

J |)

Fig. 5-3. Store to memory example.

-80 ASSEMBLY LANGUAGE INSTRUCTION TYPES

43

Fig. 5-6. Inmediate loads of 16 bits.

LD HL2050 (LOAD HL REGISTER PAIR WITH 2050)

LD HL,2050

loo1oo0co01Joooo0010f0o0001000]

[coootooofJooo0o6o001 0]
H L

LD IX,OFFH (LOAD IX REGISTER WITH OFFH)
LD IX,0FFH

[L1o11101Joo0o100001]111t1111J00000000O]

n Fig. 5-7, LD BC,(860H), transfers the two bytes
rom memory locations 860H (2144 decimal) and
61H into register pair BC. Note that the instruction
ipecifies the first memory location and that this loca-
ion plus the next higher is used in the transfer. The
:ame figure shows the inverse instruction LD (860H),
3C, which stores the contents of register pair BC into
nemory locations 860H and 861H.

ARITHMETIC

Arithmetic and logical instructions are the corner-
stone of all computer instructions, for they allow pro-
cessing of data. These instructions allow addition,
subtraction, and comparisons of two operands, and
also allow logical types of operations.

Both 8- and 16-bit adds and subtracts may be done
in the Z-80. Adds are done by using the A register

LD BC,(860H) (LOAD REGISTER PAIR BC FROM MEMORY)

B) C
L | J
860H e
861H
|
LD (860H),BC (LOAD MEMORY WITH REGISTER PAIR BC)
B C
L | 1
1 L_____ ‘
860H -
861H -

Fig. 5-7. Sixteen-bit loads and stores.

|00000000!llllllll]
IX

in the 8-bit case; the A is always the destination reg-
ister. The instruction in Fig. 5-8 adds the contents of
the L register to the contents of the A register and
puts the result in A. A second example adds the
contents of memory location (802H) with A and puts

ADD AL (ADDLTOA)
—
| A REGISTER] [LREGISTER]
L, .,
8BTS} { 8BTS
+
(ALU)
RESULT OF
8 BITS A+ 1)
ADD A(HL) (ADD MEMORY TO A)
LocaT
N
[AREGISTER | POINTED
TO BY HL
38ITS ~ gais REGISTER
[|
+
(ALY)
RESULT OF
8 BITS (A + MEMORY BYTE)
SUB 23 (SUBTRACT 23 FROM A)
— 1} IMME%;E
VALU
[AREGISTER] [oomongzamw
I 8 BITS 8 BITS INSTRUCTION
1 i '
{ALU)
RESULT OF
8 BITS A - 23)

Fig. 5-8. Eight-bit arithmetic operations.

EZ-80 THEORY

SBC HLBC (SUBTRACT BC FROM HL)

H L B c

16 BITS 1 { T6BITS

= » I I ARRY
ALU (16 BITS) ELAG

| RESULT OF
{HL—BC —CARRY)

16 BITS

ADD IX,DE (ADD DE TO IX)

IX D E

16 BITS 1 t 16BITS

+
ALU (16 BITS)
]

16 BITS
Fig. 5-9. Sixteen-bit arithmetic operations.

the result in A. A third example subtracts immediate
data with the contents of A and puts the results in A.

Sixteen-bit adds and subtracts are performed by
using the HL, IX, or IY register pair as the destina-
tion register. The other operand is in another cpu
register pair—either BC, DE, or HL. Adds or sub-
tracts of memory operands are not permitted. Fig.
5-9 shows two examples of 16-bit arithmetic, one using
the HL register pair and BC, and one using the IX
register with DE. The source-destination format is
the same as other Z-80 instruction formats.

At this point the reader may have some questions
about addition, subtraction, and negative numbers.
We've been considering binary numbers without re-
gard to sign up to this point. In this form, binary
numbers range from 0 to 255 in 8-bit quantities (0000
0000-1111 1111 or O0H-FFH), or from 0 to 65535
in 16-bit quantities (0000 0000 0000 0000-1111 1111
1111 1111 or 0000H-FFFFH). This is a perfectly fine
way to work with many numbers in the Z-80. Such
unsigned or absolute quantities such as memory ad-
dresses or counts may be handled in this fashion.

Signed numbers are handled in a slightly different
format, however. In signed 8- or 16-bit numbers, the
first bit (most significant) is used to represent the
sign of the number, as shown in Fig. 5-10. If the num-
ber is positive, the sign bit is zero and the number is
handled exactly like the absolute representation ex-
cept that it becomes a 7-bit or 15-bit number as
shown. If the first (sign) bit is one, then the remainder
of the number represents a negative number. In this
case the number represented may be found by chang-
ing all zeros to ones, all ones to zeros, and adding 1.

MAGNITUDE
BITS (7)
——— e,

(STTTTTTT] sairvawe

SIGN BIT
0 = POSITIVE
1 = NEGATIVE

Fig. 5-10. Twos complement representation.

The result is the magnitude of the negative number.
Fig. 5-11 shows the ranges and examples of this twos
complement representation.

The Z-80 performs all 8- or 16-bit adds and sub-
tracts in twos complement fashion. The programmer
does not have to be concerned with testing for the
sign of the number, performing the add or subtract,
and then changing the result to the proper sign. Add-
ing +120 and —53 is done by simply performing the
ADD; the result is +67 as shown in Fig. 5-12. As in
the case of unsigned numbers, however, the 8-bit
and 16-bit registers and memory cells have a definite
limit on the sizes of numbers that can be held. The
smallest number that can be held in 8 bits, for ex-
ample, is —128, and the largest that can be held in
16 bits is +32,767.

What happens when +127 is added to +100? The
result of +227 is too large to fit in 8 bits. As a matter
of fact, the result looks like the negative number —29,
which is incorrect (see Fig. 5-13). The Z-80 (and
other computers) flags this overflow condition by the
overflow flag. The overflow (P/V) flag can be tested
by a conditional jump, which we’ll discuss shortly.
The overflow and other flags are grouped together,

4+127({0 11111 11| LARGEST POSITIVE
NUMBER N 8 BITS
+551001 10111

TYPICAL POSITIVE

NUMBER\
[0f0 110111

SIGN = 0, THEREFORE
NUMBERIS0110111 =55

+2[00000010]+2

+1{00000001]+1

0Jo0000000] o

1[I 1111111] -1 (1J0 11011 1]

201111110} -2 SIGN = 1, THEREFORE CHANGE
ALL ONES TO ZEROS, ALL ZEROS
TO ONES AND ADD ONE:

|

—73[10 1 101 11] TYPICAL NEGATIVE 01001000
NUMBER +1
01001001 =-73

-128[10 0 0 0 0 00] SMALLEST NEGATIVE

NUMBER IN 8 BITS

Fig. 5-11. Twos complement range.

'-80 ASSEMBLY LANGUAGE INSTRUCTION TYPES

45

ADD +120 AND 53

(01 1 17100 0] +120

oot o11] _g

toft 00001 1] +67

Fig. 5-12. Twos complement: example.

1s the reader will recall, into a flag register as shown
in Fig, 5-14. Other flags affected by arithmetic opera-
:ions are the Z flag, which is set (1) if the result is
zero, the S flag which is set (1) if the sign is negative,
and the C flag, which is set (1) if there is a carry out
of the high-order bit position. The flags are not always
set after an instruction, but are set only for certain
operations. Arithmetic instructions almost always set
the flags. The complete flag actions are listed in the
Z-80 instructions in Appendix D.

The last type of arithmetic instruction is the com-
pare. Compares are permitted only with 8-bit oper-
ands. A compare is identical with the 8-bit SUB(tract)
except for one difference: The result only affects the
flags (zero, sign, carry, overflow) and does not re-
place the A register contents. It is useful when a test

ADD +127 AND +100

[efr1 1111 1] +127

[eJ1 1001 00] +100

[1T1 1000 1 1] +227 (TOO LARGE FOR 8 BITS)

L —
ZEROS - ONES,

ONES—~ZEROS 00011100 0
ADD 1 1 gquan

00011101
= -29
Fig. 5-13. Overflow example.

S| %n% PN| N I

CARRY FLAG:
SET IF CARRY QUT
OF HIGH-ORDER BIT

PARITY/OVERFLOW FLAG:
SET IF OVERFLOW CONDITION
J ON ARITHMETIC

ZERO FLAG:

SET IF RESULT IS 0 AFTER ARITHMETIC:
RESET IF NONZERO

SIGN FLAG:
SET IF RESULT IS NEGATIVE:
RESET IF RESULT IS POSITIVE

Fig. 5-14. Arithmetic flag actions.

must be made of the operand in the A register without
destroying the contents of A. '

LOGICAL INSTRUCTIONS

The logical instructions are instructions that can be
used only with 8-bit operands. Here again, as in the
case of the arithmetic instructions, the A register is
used as the destination for the result. There are three
types of logical instructions: aNps, oms, and exclusive
ORs (XORs).

LOGICAL AND
11001100] 0 AND 0=0
AND 0 AND 1=0
1 AND 1=1
10101010
10001000
LOGICAL OR
110011060] 0O 0=0
OR 0 OR 1=1
10R 1=1
10101010
11101110
LOGICAL EXCLUSIVE OR
1100110050 XOR 0=0
XOR 0 XOR 1=1
1 XOR 1=0
0101010

p—
n

01100110

Fig. 5-15. Logical operations.

The AND, OR, and xor are shown in Fig. 5-15. The
AND operation puts a one bit in the result if both the
bits in each operand are a one. If both bits are not
ones, a zero goes into the result bit position. Each
bit position is considered by itself. The or operation
puts a one bit in the result if either (or) bit of the
operands is a one. The xor puts a one bit in the re-
sult if one but not both bits are a one. ANDS and ORS
are used quite extensively in Z-80 programs to manip-
ulate data bits. Many examples will be found in the
software descriptions.

JUMPS, CALLS, AND RETURNS

Up to this point we've talked a little bit about
sequences of instructions and conditional and uncon-
ditional branches. The typical program was described

EZ-80 THEORY

- PATH 1

823 ADD A -23 TESTFOR-23

W- PATH 2

825 Jp M.1516 ;JUMP TO 1516 IF NEGATIVE

828 P 1520 ;RESULT POSITIVE HERE

(OTHER INSTRUCTIONS)

1516 LD HL.800H ;START OF RAM

1519 LD A, (HL)

1520 ADD AB
JP 555

Flg. 5-16. Conditional jump: exaniple.

» GET MS BYTE

"ADD B TO A

;JUMP TO LOCATION 555

as having many different paths. The exact sequence
of instructions taken depends upon the results of adds,
subtracts, compares, and other operations. The results,
of course, are reflected in the state of the flags. Con-
ditional jumps may be made if the result is minus,
positive, zero, nonzero, overflow, nonoverflow, and
other conditions. In the sequence of code shown in
Fig. 5-16, for example, one path is taken if the result
is negative, and another if the result is positive. Each
of the conditional jumps is a separate instruction that
tests one flag and causes a jump to a specified loca-
tion if the condition is met. If the condition is not
met, the next instruction in sequence after the jump
is executed.

Of course, there are unconditional jumps in the
Z-80, also. The JP instruction always jumps to the
specified location. Unconditional jumps are necessary
because the flow of the program occasionally has to be
altered to get around blocks of data, or because a set
of instructions has to be entered again. The last in-
struction shown in Fig. 5-16 will always jump to loca-
tion 555 after the preceding instructions have been
executed.

As mentioned earlier, performing an unconditional
or conditional jump does not save the location of the
jump. If we want to come back to the same location,
the programmer must include the address of the loca-
tion and specifically put it in the program. However,
there are instructions in the Z-80 (and in other com-
puters) that do save the return address. Let’s look
at the reason for having such a set of instructions.

Suppose that at 100 different points in the program
we had to execute the instructions of “ADD A 25
“SUB AC,” and “ADD HL,1234” (see Fig. 5-17).

“INLINE " CODE SUBROUTINE USE
-(r - 1
ADD A25 CALL 2000 3 BYTES
SUB AL 6 BYTES
ADD HL 1234
| ome | T T
T INSTRUCTIONS) T
ADD A.25 CALL 2000 3 BYTES
SUB A.C 6 BYTES
ADD HL 1234
J (OTHER | +
[STRUCTIONS) T [
ADD A25) CALL 2000 3 BYTES
SUB AL 6 BYTES
ADD HL1234 | |
o 1'
2000 [ADD AZ5 |
SUB AC
ADD HL 1234 7 BYTES
RET

100 X 6 = 600 BYTES (100 X 3) +7 = 307 BYTES

Fig. 5-17. Subroutine use.

Those three instructions take up six bytes of memory
space. Because they are executed 100 times, 600 bytes
of memory are used up. We can make a subroutine
out of the instructions, however, and put them at
only one point in the program, saving close to 300
bytes of memory. This is done by calling the sequence
of instructions by a CALL instruction at the 100 points
in the program, The CALL will jump to the sequence
of instructions and save the address of t:e instruction
after the CALL in the stack, The instructions will be
executed, and a RET(um) instruction will retrieve
the return address from the stack and return to the
location following the CALL. Net savings: 293 bytes.
Subroutines are continually used in Z-80 and other
computer programs to save memory space for re-
peated segments of code such as this.

The action of saving the return address is auto-
matically performed by the cpu when the CALL in-
struction is executed. The current contents of the
program counter (PC), which holds the next instruc-
tion address after the CALL, is pushed onto the stack.
Later, the RET instruction pops the stack, retrieves
the return address, and effectively causes an uncon-
ditional jump by forcing it into the PC. (We'l dis-
cuss stack actions in more detail later.) CALLs may
be unconditional (CALL) or conditional upon the Z
flag, P/V flag, and other cpu flags. RETurns may also

z-80 ASSEMBLY LANGUAGE INSTRUCTION TYPES

47
M. . . PUSH ~ BC :PUSH BC TO STACK
be.condltlonal or unconditional. All in all., there'are POP X . TRANSFER 86 TO IX
quite a few ways to alter the sequence of instructions STACK BEFORE PUSH
by jumps, calls, and returns.
880H ~——— SP POINTS HERE

STACK OPERATIONS

The memory stack may be thought of as building
down in memory, as shown in Fig. 5-18. Each time a
CALL is made, another address is put on the stack.
Each address consists of two bytes. The stack pointer
(SP) register is adjusted to point to the next stack
location for every byte pushed onto the stack. The
current location in the SP represents the location of
the last byte pushed onto the stack. Whenever a
RET(urn) instruction is executed, two bytes are re-
trieved (popped) from the stack and the SP is ad-
justed by two to point to a higher memory location.
The stack area is initially set by loading the SP reg-
ister with the first location to be used for the stack +1.
As the stack builds downward, it is advisable to lo-
cate it in the highest memory location. In EZ-80 pro-
grams the stack area is initialized at 8TFH (2175
decimal), the very top byte of the RAM memory area.

In addition to addresses being pushed onto the
stack, register pairs may be pushed onto the stack for
temporary storage. The instruction that pushes a reg-
ister pair onto the stack is PUSH and the instruction
that pops the register pair from the stack is POP. Fig.
5-19 shows a PUSH of register pair BC and a POP
into the IX register (in effect, a load of IX with BC).

As CALLs may be nested (a CALL within a CALL
within a CALL within . . .) and any number of
PUSHes may be used to store data, the stack area
may rapidly build downward. However, each PUSH
must have a POP and each CALL a RET(urn) so that

87FH “TOP* OF STACK
87EH 1
T0 LOW "STACK SIZE TYPICALLY
MEMORY STACK BUILDS 20-30 LOCATIONS
1 DOWNWARD
POINTS
] | TO CURRENT
; 1 "TOP OF STACK"
0

{ STACK POINTER REGISTER

Fig. 5-18. Stack use.

STACK AFTER PUSH

880H
87FH CONTENTS OF B
87EH CONTENTS OF C

~—— SP POINTS HERE

STACK AFTER POP

880H T—— SP POINTS HERE
87FH

87EH

Fig. 5-19. PUSHes and POPs.

a practical stack area is probably less than 30 bytes
for most programs.

A third use of the stack area in the EZ-80 and other
Z-80 microcomputers is for storage of the return ad-
dress for interrupts. Interrupts signal external events
that require action and may come at any time; they
are asynchronous events not related to cpu timing.

The only interrupt used in the EZ-80 is the NMI
interrupt, the non-maskable interrupt, which occurs
every Yoo of a second so that the EZ-80 can keep
track of real time. When the NMI occurs, the program
may be executing virtually any instruction. Because
the interrupt requires a jump to an NMI routine, the
address of the interrupted instruction must be saved
for a subsequent return to the interrupted point. The
NMI action causes the cpu to automatically save the
return address in the stack. After the NMI interrupt
has been processed, an RETI instruction pops the
stack, loads the PC with the return address, and causes
a return to the interrupted location.

As the NMI processing requires use of the cpu reg-
isters and flags, they must somehow be kept intact for
the return. This may be done by temporarily saving
them in the stack and restoring them just before the
return. In the EZ-80, however, the primed registers
are used instead. In effect, the nonprimed registers are
used for all processing except the NMI processing;
the primed registers are used for NMI processing.
The switch is made by EX AF,AF’ and EXX upon
entering the NMI processing routine, which makes
the primed registers active. '

These two instructions simply switch each set of
eight cpu registers, making the active set inactive and
the inactive set active. Immediately before the RETI,

Ez-80 THEORY

(1) : NMI PROCESSING ROUTINE

@ EX AF AF"
® EXX

(OTHER PROCESSING)

® EXX

; SWITCH AF AF*
; SWITCH OTHER REGS

: SWITCH OTHER REGS

® EX AFAF’ ; SWITCH AF AF*
REGISTER USE AT (1): REGISTER USE AT (2):
7 AfF
SET1 A s
49 %
ALF 4%
B | ¢ B G
5T SET2 T SET2
HlL H1L

REGISTER USE AT (3): REGISTER USE AT (1) :

ALlF AL F
SET 1 %%

B|C
D { E
HlL

2 SET 2

INE
B C
D E
H L

REGISTER USE AT (5) :

AN
(SHADED AREAS SHOW
Wit REGISTERS IN USE)
A F
Bl ¢C
D |E
H L

Flg. 5-20. General register exchanges.

the registers are switched again (see Fig. 5-20). In
this way the nonprimed registers are kept intact.

ROTATES AND SHIFTS

The rotate and shift instructions in the Z-80 oper-
ate upon cpu registers, and, in some cases, memory
locations.

The rotate instructions rotate 8 or 9 bits to the
right or left one bit position, as shown in Fig. 5-21.
The bit rotated out of the left or right end of the cpu
register or memory location replaces the bit on the
opposite end for an 8-bit rotate. At the same time,
the bit goes into the carry flag. The bit “shifted out”
can then be tested for a one or zero by a conditional
jump such as JP NC, JumP if No Carry. Nine-bit
rotates operate in the same manner except that the bit
shifted out replaces the previous contents of the carry

10101010 BECOMES

% 8BITROTATE RIGHT L‘ 01010101
: REGISTER OR MEMORY

00001111 BECOMES
00011110

8-BIT ROTATE LEFT j_—.l
REGISTER OR MEMORY
9-BIT ROTATE RIGHT L|
REGISTER OR MEMORY N

9-BIT ROTATE LEFT 00000000 1 BECOMES

_ 1_} 10000000 0
REGISTER OR MEMORY

0 11111111 BECOMES
Fig. 5-21. Rotate operations.

1 11111110

flag. The previous contents of the carry goes into the
opposite end of the register or memory location. Both
8- and 9-bit rotates find use in Z-80 programs, many
times shifting cpu registers rather than memory loca-
tions.

Shifts in the Z-80 fall into two categories, logical
shifts and arithmetic shifts (see Fig. 5-22). Logical
shifts shift one bit position at a time right or left with
a zero filling in the vacated bit position. The arith-
metic shift (SRA) shifts a cpu register or memory
location one bit position right. The sign bit dupli-
cates itself as the shift is made. This has the effect of
extending the sign bit as the number in the operand
is shifted. Both logical and arithmetic shifts are used
in Z-80 programs. The logical shift finds more exten-
sive use than the arithmetic, however. (A logical
shift left multiples by a power of two, while a logical
shift right divides by a power of two.) Both types of
shifts set the carry flag to the value of the bit shifted
out of the register.

BIT SET, RESET, AND TEST

The instructions in this group allow a programmer
to set, reset, or test any bit position in most cpu reg-
isters and all memory locations. This saves several
instructions as the alternative way to perform this
operation is to do a load, AND or oR, and store. The

LOGICAL SHIFT

0 —{ REGISTER OR MEMORY }—= LOST

11111111 BECOMES
01111111

ARITHMETIC SHIFY

—
[_}— tost
L1
SIGN
RETAINED
10111110 (~66) BECOMES
11011111 (-33

Fig. 5-22. Logical and arithmetic shifts.

Z-80 ASSEMBLY LANGUAGE INSTRUCTION TYPES

49

SET 5B (SET BIT 5 OF B)
76543210

BREGISTERBEFORE 11 1 011111

BREGISTERAFTER |1 1111111

RESET 58 (RESET BIT 5 OF B

)
76543210
BREGISTERBEFORE |1 1 111111
BREGISTERAFTER |1 1011111
BIT 58 (TEST BIT 5 OF B)
76543210
BREGISTERBEFORE |0 1 1 00110
CARRY BEFORE 0
B REGISTER AFTER 110011 0] (UNCHANGED)
CARRY AFTER

Fig. 5-23. Bit instruction operation.

bit instruction performs the same operation with one
instruction. Fig. 5-23 shows an example of each of
the three types operating on the cpu B register. The
format of this type of instruction includes a “bit”
specifier that defines which bit of the cpu register or
memory location is to be acted upon. Bit positions in
the Z-80 are numbered 7-0 from left to right, each
number corresponding to the power of two that is
represented, as shown in Fig. 5-24.

1/0 OPERATIONS

Input/output instructions have been discussed in

preceding chapters in relation to the architecture of
the EZ-80. There are two basic i/o instructions: read
(RD) and write (WR). The two instructions we will
use in the EZ-80 use the A register for both input and
output, although another type uses a slightly different
scheme (see Appendix D).

The format of the read instruction is RD A,(NN),

VRRVINIR
BITNUMBER 7 6 54 3 210
CIITITTT]

(REGISTER OR MEMORY LOCATION)
Fig. 5-24. Bit position numbering.

where NN is an i/o address of 0 to 255. The valid
i/o read address in the EZ-80 is 2, and refers to the
8255 PPI input register. When data is being read from
the keyboard (when the keyboard is being scanned),
the A register must contain an address of 80H, 40H,
20H, or 10H before the read to scan the appropriate
row bit. When data is being read from the input
lines IN1-INS5, the A register address is not required.

The format of the write instruction is WR (NN) A,
where NN is an i/o address of 0 to 255. Valid i/o ad-
dresses in the EZ-80 are 0 and 1. A WR (0),A outputs
data in the A register to the LED display. A WR
(1),A outputs data in the A register to the output
lines OUT1-OUTS.

MISCELLANEOUS INSTRUCTIONS

The preceding discussion briefly describes 90 per-
cent of the instructions used in typical programs
written for the EZ-80 and for most other Z-80 pro-
grams. There are many other instructions that are
not used as frequently in Z-80 programs. Some of
them are very simple, such as NEG, which negates
the value in the A register, and some of them are very
complex, such as LDIR, which moves an entire block
of memory from one area in memory to another.
Instructions not described above will be discussed as
they appear in the application programs for the EZ-80,
and are also referenced to Appendices D and E.

CHAPTER 6

Z-80 Assembly Language—Addressing and Formats

This chapter discusses the several addressing types
available in the Z-80 instruction set. Some Z-80 in-
structions have no addressing variations, while others
offer several variations to address either cpu registers
or memory locations. Once the instruction and ad-
dressing possibilities are known, a set of instructions
for an EZ-80 program can be either hand assembled
or assembled automatically. If the reader does not
want to create his or her own programs for the EZ-80,
he or she may want to scan the applications programs
and investigate their approach to solving applications
problems.

ADDRESSING MODES OF THE Z-80

What are addressing modes and why are they nec-
essary? Some instructions perform a specific prede-
fined set of actions. No variations are possible. An
example of this type of instruction is the CPL instruc-
tion. The CPL always operates on the A register,
changing all ones to zeros and all zeros to ones (Com-
PLement Accumulator). This action cannot be per-
formed on any other cpu register. We could use this
scheme of unique instructions and create hundreds of
predefined instructions in the Z-80 or another micro-
processor. However, this approach is somewhat limit-
ing. Do we only permit an add of the B register to the
A register? Or do we allow all registers to be added?
Do we allow only cpu registers to be added, or do
we allow memory locations? The reader can see that
it is useful to take a generic instruction such as an
ADD and allow variations on the source operand.
This generic approach is used on many instructions
in the Z-80 to create a general-purpose instruction set.

Another reason for having different addressing
modes for instructions in the Z-80 relates to the ante-
cedents of the Z-80. Its grandfather, the 8008, had a
limited way of addressing memory. Its father, the
8080, had incorporated these methods and added
more powerful addressing capability. The Z-80 ex-

panded even further on this addressing capability,
while retaining all of the 8008 and 8080 instruction
types and addressing modes.

The basic addressing types in the Z-80 instruction
set are:

Implied Addressing
Immediate Addressing
Register Addressing
Register Indirect Addressing
Extended Addressing

Page 0 Addressing

Relative Addressing
Indexed Addressing

Bit Addressing

IMPLIED ADDRESSING

Implied addressing is the case mentioned above, a
specific predefined set of operations for an instruc-
tion. Some implied instructions are NEG (Negate
Accumulator), SCF (Set Carry Flag), and NOP (No
Operation). These and other instructions perform
simple operations, or are limited to operations on the
A register. Format examples are shown in Fig. 6-1.

IMMEDIATE ADDRESSING

We've already mentioned immediate addressing,
but let’s discuss it a bit more. In immediate addressing
the operand is in the second or second and third
bytes (in most cases) of the instruction. The imme-
diate data may be either an 8-bit value or a 16-bit
value. The first byte of the instruction is an op code,
or operation code that defines the instruction type
and which the cpu uses in decoding the instruction.

An example of an 8-bit immediate instruction is
shown in Fig. 6-2, which shows the ADD AN instruc-
tion. The first byte is 11000110 (C6H) and is fixed.
This is the op code for the ADD A)N. The second byte

50

-80 ASSEMBLY LANGUAGE—ADDRESSING AND FORMATS

NEG (NEGATE)

11101101 BYTEQ (EDH)
01000100J BYTELT {(44H)

SCF (SET CARRY FLAG)
00110111] BYTEO (37H)

NOP (NO OPERATION)
000000L00] BYTEO (00H)

Fig. 6-1. Implied addressing examples.
ADD AN (ADD IMMEDIATE)

11000110]|BYTEO (C6H)
. N BYTE 1 (8-BIT IMMEDIATE VALUE)
ADD A,35
1100011 0|BYTEO (C6H)
0010001 1JBYTELT (234 =35
Fig. 6-2. Eight-bit immediate addressing example.

is “N.” N stands for an 8-bit operand from 0 to +127,
or from —1 to —128 (twos complement form). The
instruction ADD A,35, for example, has a 35 decimal
(23H) in the second byte. When the instruction is
executed, 35 will be added to the contents of the A
register and the result will be put into the A register.
The flags will also be affected. Eight-bit immediate
instructions are found for loads (LD B,38), arith-
metic instructions (ADD A,0FEH), logical instruc-
tions (OR 59), and others. In the instruction format
the immediate data never has parentheses around it.

An example of a 16-bit immediate instruction is
shown in Fig. 6-3. The instruction is LD HL,NN. The
first byte of the instruction is the op code 0010 0001
(21H) and is fixed. The second and third bytes are
the immediate operand NN. NN stands for a 16-bit
operand from 0 to +32,767, or from —1 to —32,768
(twos complement). As an example of a specific im-
mediate load, look at LD HL,1000 in the same figure.
LD HL,1000 will load the decimal value 1000 into
the HL register pair. Decimal 1000 is 3E8 in hexa-
decimal or 0000 0011 1110 1000 in binary. Note that
the second byte holds the low-order 8 bits of 1110
1000 while the third byte holds the high-order 8 bits

D HLNN (LOAD HL IMMEDIATE)
001 00001]BYIED (@)
N BYTE L} 1
N BYTEZ) ™ MMEDIATE VALUE)
LD HL1000
00T 0000 1]BTED (2IH)
1110 1000]BYIEL
T0000011 val (1000)

Fig. 6-3. Sixteen-bit immediate addressing example.

51
ADD AR (ADD REGISTER R TO A)
(10000 R]ByiE0
000 =8
001 =¢
010=0D
011=E
100=H
101 =L
ADD AH (ADD HTO A) 111=A

100001 00]BYTEO (84H)

Fig. 6-4. Single register addressing format.

of 0000 0011. This somewhat strange orientation holds
throughout all Z-80 instruction and data formats. The
high-order byte is always first (low memory address)
followed by the low-order byte (high memory ad-
dress). Sixteen-bit immediate addressing is used for
immediate loads of register pairs and 16-bit registers
in the Z-80.

REGISTER ADDRESSING

Register addressing is easily understood. We could
say that we had seven separate instructions for an
ADD of a cpu register to the A register: ADD A,B;
ADD A,C; ADD A,D; and so forth. Instead, we put
the instruction in general form and say that we have
a register field, as shown in Fig. 6-4. Here the 10,000
bits are fixed, but the low-order three bits are used
to specify a cpu register. Thus 000 stands for B, 001
for C, and so forth, as shown in the figure. This same
type of general approach is used in other instructions.
The ADD HL,SS instruction adds a specified register
pair to HL. The “SS” is a two-bit field as shown in Fig.
6-5, and specifies either BC (00), DE (01), HL (10),
or SP (11). Here again, there could have been four
“implied” instruction types, but to save time and space
the ADD HL,SS format was used. The “field” concept
is used in many instructions in the Z-80. Depending
upon the instruction, different codes are used for the
registers. A cpu register is always specified by a
three-bit field with the coding shown in Fig. 6-4.
Register pair codes vary with the instruction type as
shown in Fig. 6-5. These codes are repeated to avoid
confusion in Appendix E, “Z-80 Operation Code List-
ings.” Most instructions of this type are one byte long.

REGISTER INDIRECT ADDRESSING

Register indirect addressing is a carryover from the
8008 instruction set. In the 8008 a single register pair,
HL, was used to address memory operands for every
instruction that used a memory operand. The HL reg-
ister pair had to be loaded with a memory address
before the memory reference instruction was executed.

52

Ez-80 THEORY

ADD HLSS (ADD REGISTER PAIR S TO HL)
[0 0fs s[1 0 01] BYTED
00 =8C
01=D0E
10=H
11=¢5p
ADD HLHL (ADD HL TO HL)
00101001] BYTEO (29H)
ADD IXPP (ADD REGISTER PAIR PP TO IX)
11011101] BYTEQ (DDH)
00JPP[1 00 1| BYTEL
00 =8C
01 =DE
10=IX
11 =5P
ADD IXSP (ADD SP TO IX)
11011101] BYTEO (DDH)
001 11001] BYTE? (39H)

Fig. 6-5. Register pair field coding.

Fig. 6-6 shows this sequence. First the HL register is
loaded with 803H, the RAM memory address. Next,
the ADD A,(HL) instruction is executed. The ADD
A,(HL) finds the second operand for the ADD by
using HL as a register pointer to memory address
803H. The contents of 803H is read and added to the
A register with the result going to the A register.

The 8080 expanded upon this concept by allowing
BC and DE to be used as register pointers in identical
fashion. The disadvantage of this method is that the
memory operand cannot be referenced directly. Every
time an instruction uses the form (HL), (DE), or
(BC) as the source (rightmost) operand, this register
indirect form of addressing is being used. Examples
of this are shown in Fig. 6-7. This is not necessarily a
bad way to access memory operands, but it does have
an historical basis. Instructions using this type of ad-
dressing are loads, arithmetic, logical, increments,
decrements, bit instructions, and others. All instruc-
tions of this type are one-byte instructions.

LD HL,803H
ADD A (HL)

LOAD POINTER REGISTER
ADD CONTENTS OF 803H

T [08H | O03H |
H L
802H
8034 [OPERAND FOR ADD

804H

)

Fig. 6-6. Register pointer use.

OR (HL) (OR A INDIRECT)

01 101710]8TE0 (B6H)

LD A(DE) (LOAD A INDIRECT)

0001101 0]BYTEQD (l1AH)

LD A(BC) (LOAD A INDIRECT)
00001010)BYTED (0AH)

Fig. 6-7. Register indirect addressing examples.

EXTENDED ADDRESSING

This form of addressing was added in the 8080 and
is powerful. Here the memory operand address does
not first have to be put into a register pair to be used
as an indirect pointer. The memory operand can be
referenced directly, as in LD A,(803H) which loads
the A register with the contents of memory location
803H, or LD HL,(803H), which loads the HL reg-
ister pair with the contents of 803H (to L) and 804H
(to H) (see Fig. 6-8). This form of addressing is used
only for loading the A register or register pairs, for a
comparable store operation, for jumps, or for calls.

LD A(NN) (LOAD A DIRECT)
001 11010] BYTEO (3AH)
N DIRECT
N ADDRESS NN
LD A,(803H)
001 11010] BYTED
0 000001 1| BYTEL: LS BYTE OF ADDRESS
000071 000] BYTE2: MSBYTE OF ADDRESS

Fig. 6-8. Extended addressing examples.

When extended addressing is used, the memory
address in the instruction is in the second and third
bytes, and is in reverse format. The low-order byte
of the address (0000 0011 in this case) is in the sec-
ond byte, and the high-order byte (1000 0000) is in
the third byte. Extended addressing instructions are
usually three-byte instructions, with the first byte rep-
resenting the op code.

PAGE 0 ADDRESSING

Page 0 addressing is only used for eight instructions,
the restart (RST) instructions. The RSTs are one-
byte instructions that are equivalent to a CALL. Re-
call that the CALL jumped to a subroutine and stored
the return address in the stack. The CALL is a three-
byte extended addressing type of instruction that

-80 ASSEMBLY LANGUAGE—ADDRESSING AND FORMATS 53
AL
(©PCODE) 1004 [T 00T 1000 IR 1104
11001100800 (DISPLACEMENT) 101 [00 0 0 1 110 < -
1034 AT IR INSTRUCTION
104H
RST (RESTART) 1gsn 110
BYTE 0 106H ~1024
00 0 = LOCATION 0 1078 O0EH = DISPLACEMENT
001 = LOCATION 8 108H
010 = LOCATION 16 109H
011 = LOCATION 24 10AH
100 = LOCATION 32 10BH
1 0 1 = LOCATION 40 10cH
1 10 = LOCATION 48 10DH
111 = LOCATION 56 10EH
RST 56 10FH
110K

BYTE 0

Fig. 6-9. RST vs, CALLs.

pecifies the jump address in the second and third
iytes of the instruction, as shown in Fig. 6-9. The
{ST performs exactly the same function as the CALL.
t jumps to a subroutine location and stores the return
ddress in the stack. The RST, however, can only
ump to one of eight locations: 0, 8, 16, 24, 32, 40, 48,
r 56 in page O (locations 0-255). The location for
he CALL is encoded in a 3-bit field in the RST as
hown in Fig. 6-9. The RST is used for commonly used
ubroutines called many times in the program (it has
nother use in interrupt processing not implemented in
he EZ80).
RELATIVE ADDRESSING

Relative addressing is used only for certain types
f two-byte jumps. Let’s compare the two types of
ddressing used in jumps. In a three-byte JP the first
wyte is the op code, and the second and third are the
.ddress in reverse format. The address specified is
m absolute address that refers to a specific memory
ocation. In a two-byte JR the first byte is the op code
mnd the second byte is a relative address. Relative
o what? Relative to the current contents of the pro-
rram counter, PC. But the PC points to the next in-
truction after the JR! That’s correct. The relative
ump finds the location for the jump by adding the
:ontents of the PC with the displacement field in the
econd byte of the JR. As this may be 0 to +127, or
-1 to —128, the JR may cause a jump up to 127 loca-
ions forward or up to 128 locations back from the
ocation of the instruction. If the JR were located at
ocation 100H, and a jump to 110H was required (see
7ig. 6-10), then the displacement value in the second
syte of the instruction would be (110H-102H), or EH
r 14 decimal. The value 102H was used because the
>C really points to the location after the JR; the JR
itarts at 100H, but the PC points to 102H.

Relative jumps save one byte in length over a di-
ect jump. Furthermore, because they do not specify

Fig. 6-10. Relative jump example.

an absolute address, they are relocatable—they can
be moved anywhere in memory and still jump n num-
ber of bytes forward or back from the JR instruction.
When a relocatable JR is combined with other re-
locatable instructions, a relocatable code segment is
defined which does not have to be redefined (reas-
sembled) for different locations in memory.

INDEXED ADDRESSING

The most complex form of addressing in the Z-80
is indexed addressing. In indexed addressing the con-
tents of one of the two index registers IX or 1Y is
added with a twos complement displacement byte in
the instruction, as shown in Fig. 6-11. The result of

this add is the address used to read the operand of the

instruction.

ADD A(IX + 20H) (ADD A, INDEXED)

1101 110T1]BYTED
10000110 Bvrsl}‘opcooﬂ
00 10000 0] BYTE2 (DISPLACEMENT = 20H)

(000010000100 0 0] IX=2840H
[0o10 0 O] DISPLACEMENT = 20H

100001000 01100000] EFFECTIVE ADDRESS = 860H

ADD A(IX — 20H) (ADD A, INDEXED)

1101 11 01]BEo

10000110 awn}‘OPCODE)

T 110 000 0] BYTE 2 (DISPLACEMENT = EOH = — 20H)
T 0001000 01 000000] IX=80H
T 111111 171 1 1 00000] DISPLACEMENT = EOH
[0 001000001 00000] EFFECTIVE ADDRESS = 820H

% = SIGN EXTENSION BY ALL ONES

Fig. 6-11. Indexed addressing operation.

54

EZ-80 THEORY

Consider the indexed instruction ADD A,(IX+
20H). If the IX register contained 840H, then the
effective address obtained by adding IX and the dis-
placement byte of 20H is 860H. The add will add the
contents of memory location 860H with the contents
of the A register and put the result in the A register.
As in the case of the relative addressing mode, the
displacement byte can be positive or negative. Fig.
6-11 also shows an example of an ADD A,(IX—20H),
where the displacement byte contains the negative
displacement EOH (—20H or —32). In this case the
effective address is 840H + (—20H) or 820H, and the
add will use the contents of memory location 820H
for the operand to be added to A.

Indexed addressing can be used to good advantage
in accessing tables of data. The index register, IX or
IY, is set to the beginning of the table and data can
be read by changing the displacement value in the
instruction.

All indexed instructions use two bytes for the op
code. The only effect of this is to make instruction
execution somewhat longer (and to generate two M1
cycles—see Chapter 2).

BIT ADDRESSING

The last instruction addressing type is bit address-
ing. Bit addressing is used only for the bit set, reset,
and test instructions. These instructions may use reg-
ister, register indirect, or indexed addressing and the
bit addressing really refers to the field in all of these

SET BR (SET BIT, REGISTER ADDRESSING)

11001011]BYED (OPCODE)
11] B | R BYTE 1
\

A

000=BITO 000 =B REGISTER
001=BITl 001 =C REGISTER
010=BIT2 010 =D REGISTER
011=8BT3 011 =E REGISTER
100=8BIT4 100 =H REGISTER
101=8BIT5 101 =L REGISTER
110=8BIT6 111 =A REGISTER ,
111=8T7

RES B,(HL) (RESET BIT,REGISTER INDIRECT)

100010 1T1]BYTEO (OPCODE)
1 1] B J110]BYTEL

/
BIT POSITION
{SAME AS ABOVE)

BIT BJ(Y + D) (TEST BIT, INDEXED ADDRESSING)

T1.01]BYTEO
1011 BYTEI} (0P co0E)

i) BYTE 2 (INDEX DISPLACEMENT)
D 1] B 1 10]BYIES

| —
o —

(=1 Ll
ol|—

/
BIT POSITION
(SAME AS ABOVE)

Fig. 6-12. Bit addressing.

instruction types that specify the bit to be used in the
instruction, as shown in Fig. 6-12. The bit field speci-
fies which bit 7 through 0 (left to right) is to be set,
reset, or tested. The byte in which the bit is located
is either a cpu register (register addressing) or mem-
ory location (register indirect or indexed addressing).

USING THE Z-80 INSTRUCTION SET

How does one wade through the swamp of Z-80
instructions to select the best instructions to perform
a certain task? As mentioned in the last chapter, there
are no precise rules on how to put together instruc-
tions into a program. Because the execution speeds
are very fast—hundreds of thousands of instructions
per second—even an inefficient program will probably
be fine for a particular task.

To illustrate this idea let’s discuss a typical problem
and write several programs to solve it. The problem
is this:

PROBLEM

Find the smallest of 16 positive numbers. The num-
bers are located from 810H through 81FH in EZ-80
memory, as shown in Fig, 6-13.

In the solutions to this problem, we’ll refer to Ap-
pendix D, the instruction set of the Z-80 grouped in a
functional basis, and Appendix E, a detailed descrip-
tion of the Z-80 instruction set.

810H 111
811 17
812 56
813 7
814 112
815 33
816 5
817 13 LIST OF 16
818 19 POSITIVE NUMBERS
819 127
81A 101
818 1
81C 3
810 57
81E .
81F)]
3 L

Fig. 6-13. Coding example.

This problem obviously involves a compare of one
number to another, so a CP (compare) instruction is
called for. We must load each number, one at a time,
into the accumulator and compare it with the last
smallest. At the end of 16 compares, the A register will
hold the smallest number of the 16.

: AN .
-80 ASSEMBLY LANGUAGE—ADDRESSING AND FORMATS

55

Solution 1

The code below shows one solution to the problem.
Register B holds the smallest number throughout for
:omparison with the next number in A. At the end
‘he smallest number in B is transferred to A. Each
wumber is loaded into A by an extended addressing
oad, the compare is done, and if the new number is
smaller than the old, it replaces the old as the smallest
aumber up to that point. Initially, B is loaded with
+127 to ensure t-at some number is smaller (or that
all numbers are +127).

LD B,127 Smallest number

LD A,(810H) Load first number
CP B Compare A to B (A—B)

JP P,NEXT1 Jump if A—B is positive
LD B.A New smallest
NEXT1 LD A,(811H) Load second number

CP B Compare Ato B

JP PNEXT2 Jump if A—B is positive
LD BA New smallest

NEXT2

NEXT15 LD A,(81FH) Load sixteenth number
CP B Compare Ato B
JP P,NEXT16 Jump if A—B is positive
LD BA New smallest

NEXT16 LD AB A now has smallest

The instructions above repeat the same operation
16 times. (The dots indicate similar operations not
listed.) The next number is loaded, compared, and
put into B if it is smaller than the current smallest.
The JP PNEXTX jumps around the transfer if the
new number is not smaller. (The label NEXTX is used
to indicate where the jump will be. In fact, this will
be replaced by numeric value in the instruction, but
for now it serves to represent the actual numeric
location. The “P” in the “JP P, . . .” represents the
conditional jump, Jump if Positive. This program will
work but is quite long. If we had to compare hun-
dreds of numbers, the program would be quite un-
wieldy. '

Solution 2

One way to shorten the program would be to make
a subroutine out of the instructions CP, JP, and LD,
which are repeated 16 times. This could be done by:

LD B,127 Smallest number

LD A,(810H) Load first number

CALL COMP Compare and switch
. LD A,(811H) Load second number

CALL COMP Compare and switch

LD A,(81FH) Load sixteenth number

CALL COMP
LD AB

Compare and switch
A now has smallest

COMP CP B Compare A to B (A—B)

JP P,NEXT Jump if A—B is positive
LD B,A New smallest
NEXT RET Return

The subroutine designated COMP performs the
three operations and can be CALLed from 16 points
in the program. It returns to the return address by the
RET instruction. The label COMP in the CALL in-
struction is a symbolic representation of the actual

numeric value that will be used in the code for the
CALL.

Solution 3

The code above is shorter (38 instructions instead
of 66), but still not too efficient. Let’s use the register
indirect capability to load each of the 16 data values.

LD C,16 Count of 16
LD HL,810H Load pointer
LD B,127 Smallest number

LOOP LD A,(HL) Get next number
cCP B Compare Ato B (A—B)

JP P,NEXT Jump if A—B is positive
LD B,A New smallest

NEXT INC HL 810, 811, 812,813, . . . , etc.
DEC C Count —1
JP NZLOOP Jump if count not zero
LD AB A now has smallest

This program is quite short. The key to its opera-
tion is a loop. Instead of making 16 loads of LD A,
(810H), LD A,(811H), etc., the program loops back
16 times to location LOOP. Each time it loops back
HL points to a new location. HL initially starts off
at 810H, but is incremented by one in the INC HL
instruction. A count of 16 in the C register is decre-
mented by the DEC C instruction. This count varies
from 16, 15, 14, . . . , and so on down to 0. When it
reaches zero, the zero flag is set and the conditional
branch’ JP NZ,LOOP is not made—the LD A,B is ex-
ecuted instead. The concept of the loop is very power-
ful and used extensively in programs,

LOCATION LENGTH

0 2 L C16
3 LD HLB8IOH
2 LD BI27
1 LOOP LD A(HL)
1 cP B
3 JP PNEXT
1 LD BA
1 NEXT INC HL
1 DEC ¢
3 P NZ,LOOP
1 LD AB

Fig. 6-14. Assembling example 1.

56

EZ-80 THEORY

ASSEMBLING THE PROGRAM

Now that the program has been defined, let’s gen-
erate the code used by the Z-80. The EZ-80 uses the
EPROM area to hold programs, so well use the
EPROM locations starting from memory location zero.
The numbers on the extreme left represent the loca-
tions that will hold the code. First of all, we must
know how long each instruction is. We can find this
out by reference to Appendix E, which gives the
length in bytes. Write down the lengths before each
instruction, as shown in Fig. 6-14.

Now we can assign a location to each instruction
by adding the length in bytes to the last location, as
shown in Fig. 6-15. These will be hexadecimal loca-
tions. Conversion from decimal to hex can be done
by reference to Appendix B,

LOCATION LENGTH

0 2 LD C16

2 3 LD HL8IOH
5 2 Lb B1Z7

7 1 LOOP LD A(HL)

8 1 cP B

9 3 P PNEXT
C 1 LD BA

D 1 NEXT INC HL

E 1 DEC C

F 3 JP - NZLOOP
12 1 LD AB

Fig. 6-15. Assembling example 2.

Now we can construct each byte of the instruction,
based on the number of bytes in the instruction. Draw
a line for each byte required, as shown in Fig. 6-16.
By reference to Appendix E we can now fill in the
op codes and operands of each instruction. The LD
C,16, for example, is two bytes long with an op code
of 00001110 or OEH. (The code in the C register 001
has been included.) The immediate value of 16 goes
in the second byte as 10H. Some of the operands are
memory addresses. Location LOOP is actually nu-
meric location 0007H, for example. A reference to
this location is made in JP NZ,LOOP, and the second
and third bytes of the instruction are filled in with
the reverse form of the memory address. In this man-
ner the entire program can be hand assembled. The
result is shown in Fig. 6-16.

The hand assembly process at first seems very
difficult. There are many hobbyists doing exactly this,
however, and the reader will find that after a while
the process goes very rapidly and mechanically.

Is there an easier way to assemble a program? Yes,
there is, but the reader must have access to a micro-
computer built around the Z-80, such as a Radio Shack
TRS-80 or similar personal computer. These micro-
computers enable automatic assembly of a program

by a program called an assembler. All of the pro-
grams in this book have been automatically assembled
by an assembler running on a TRS-80 and we will
take a look at the format of such an assembly. (The
author has also done his share of hand assembly, and
assures you it is quite feasible!)

LOCATION LENGTH
o of 10D 2 L Cl6
2 2110 08 3 LD HLSIOH
5 06 7F 2 L0 BiZ7
7 I 1 LOOP LD AgHL)
s 8@ 1 P B
9 F20D 00 3 P PNEXT
¢ 4 1 LD BA
D 23 1 NEXT INC HL
E 0D 1 DEC ¢
Focoro® 3 P NZLOOP
12 18 1 LD AB
EXAMPLES
@ooJoo1ft 10Joo010000] =0F10
[—) L ——
¢ REG 10H = 16

@[oi11Jo00] =88
[

B REG

CONDITION FIELD = 000 = NZ
/

foooJoto]=co
000111]/00000000]=20700

. J

16-BIT DIRECT
ADDRESS, REVERSE ORDER

®

Fig. 6-16. Assembling example 3.

The format of program listings in this book is shown
in Fig. 6-17. The right-hand two-thirds of a listing
represents the source program that was written down
by the programmer. The left-hand one-third repre-
sents the automatic assembly of the program. The ex-
treme left-hand column is the memory location of
the first byte of the instruction. The next column is
the hexadecimal representation of the one to four
bytes of the instruction (each byte consists of two
hex digits). The third column is the line number of
the instruction. These are arbitrary ascending num-
bers used only for reference purposes.

There are certain other assembler-related opera-
tions that replace the operation code mnemonic. These
will be described in Section 3 of the book as the appli-
cations programs for the EZ-80 are described. This
chapter was meant to give the reader some feeling
for the operations involved in programming and as-
sembling programs for the EZ-80. If you do not want
to program your own applications, you can get by
quite nicely using the applications programs provided.

-80 ASSEMBLY LANGUAGE—ADDRESSING AND FORMATS

57

ASSEMBLY

SOURCE PROGRAM

r N N
2049 Cz490@ PR6Z2 RAMIO JP NZ+RAM1O $LOOF HERE ON ERROR
Ba4C ZF 206302 CPL. 5~-1 TO A
@e4D 3:0z08 286 4G LD (B@zH) A SETORE -1
o502 3ADZ08 BBe5S0 LD AL (8OEH) sOET CONTENTS
P53 3C PRLLD INC A STEST FOR ALL ONES
2054 CZ5400 PO670 RAMZD JP NZ s RAMZG sLOOP HERE ON ERROR
P57 ZIFFFF LB LD HL s —1 iFOR DELAY CNT
005A @QLIFFFF BB570 L.D B —1 sFOR DELAY DECREMENT
205D @9 PR76R RAM3Q ADD HL.BEC sDECREMENT COUNT
POSE DASDDO o710 JP Cs RAM3G SLOOP IF NOT &4
po7zR 3
QB73@ STEST Z:SHORT RAM MEMORY TEST
BR740
&1 3E1E Ba750 MEMTET LD Ad1ZH sFOR TEST =
63 1804 ba77a JR HTH FRYPASE NPT VECTOR
aa7ea s
aR79@ iNM O INTERRUPT VECTOR
oasBe
QR&E eas1d DORG &HeH
aRss Cls1 ekt s JP NMIHARN 5G0 TO PROCESS NMIT
nase pag3x ORG &EIH
RB&Y D3GG BOS35 auT (D h SOUTPUT TO LEDS
PRLE 210208 BRe4sd LD HL » 8@ZH 5START OF RaAM
PD6E @670 bassn LD B 124 5SIZE OF RAM —~WORKING
na7a AF 20860 XOR A 1@ TO A
on71 77 28878 MEMLIA LD (HL.) s & $STORE ALL ZERGES
o7z 7E ralradSisin LD As (HLD $GET STORED VALUE
o073 FEBG 20890 cP i} 1S IT ZEROY
D@75 Ccz75e0 deean MEMZEH JF NZ s MEMZ@ sLOOF HERE OM ERROR
w78 ZF @e710 CPL. 51 TO A
aevy 77 pavzd LD CHL Y 5 A sETORE ALL ONED
aB7Aa TE PO?30 LD A CHLD $GET STORED Value
pave 3C bRI40 INC) 316 IT ~1
B@7C C27C0O0 Q0956 MEM3@ JP NZ s MEM3@ LOOP HERE ON ERROR
Qa7F =3 LV INC HL. SEUMF POINTER
2080 10EF RB960 DJINZ MEM10 SCONTINUE HERE FOR 128
o8: ZIFFFF PeY7o LD HL»—1 SFOR DELAY CNT
Q085 DIFFFF 82980 LD BCy—1 sFOR DELAY INC
ress 29 20992 MEM40 ADD HLsBEC sDECREMENT COUNT
2089 DABBOR 21000 JP CiMEM4D JLOOF HERE IF NOT &ak
21212 s
1020 STEST3:NMI/CLK FREGUENCY TEST
21030 s
228C 3E13 2104@ NMICLK LD Ay 13H sFOR TEST 3
P@BE D300 81050 ouT (@)sA SOUTPUT TO LEDS
P70 213075 21060 LD HL» 30000 s3@ SEC DELAY AT 1 MHZ
2093 CD53@1 21070 CALL DEL.AY
2096 AF 21280 XOR A 6 TG A
2097 D30@ 21070 ouT (@) A ;CLEAR LEDS
099 211027 21100 LD HL+ 10000 51@ S5EC DELAY
2@9C CD5301 21110 CALL DELAY
BO9F =2138FC 21120 LD HL s @F C38H sFINAGLE FACTOR FOR 10
20A: =20008 ?1130 LD (TIME) s HL SINITIALIZE RTC CNT
PoAS 3E13 21140 LD As 13H $SECOND PART OF TE&T 3

Fig. 6-17. Program listing format.

58

Ez-80 THEORY

However, if you do choose to learn assembly-language
programming, you may want to study the programs in
detail and try your hand at many different applica-
tions that can be performed on the EZ-80.

For the more serious reader, Sams’ publication The
Z-80 Microcomputer Handbook by this writer may be
consulted for additional information on Z-80 pro-
gramming and hardware aspects.

SECTION 2

EZ-80 Construction

CHAPTER 7

Construction of the EZ-80

This chapter describes the construction of the
EZ-80 microcomputer. The EZ-80 consists of five
parts: the power supply, keyboard, microcomputer
board, applications area, and optional large-digit dis-
play, as shown in Fig. 7-1. The cabinetry containing
the EZ-80 may be as elaborate as the reader desires.
The chassis used in the examples of this book is a
relatively inexpensive slope-front chassis measuring
9 inches deep by 7 inches wide by 3 inches high or
22.86 by 17.78 by 7.62 cm (see Fig. 7-2). It nicely
accommodates the microcomputer board and power
supply and provides a convenient mounting for the
12-key keypad and LED display. This cabinetry is
an embellishment and the EZ-80 can be just as easily
used in a more simple chassis.

The EZ-80 was designed to utilize inexpensive com-
puter components. Obtaining all of the parts should
be no problem in a metropolitan area. For those not
near the computer stores and electronic parts sup-
pliers of a larger town, all of the parts are offered
through numerous mail order parts distributors that
advertise in magazines such as Kilobaud Microcom-
puting, Popular Electronics, and Radio Electronics.
Chart 7-1 lists all parts required for the EZ-80.

Two basic types of construction are possible for the
microcomputer board: wire-wrap and printed-circuit
construction. Both types are explained in detail in
this chapter, The wire-wrap technique requires some
inexpensive wire-wrap tools and a little more patience
than the printed-circuit board construction. A com-
plete set of printed-circuit board layouts is shown in
Appendix F for those who have the facilities to etch
the board, the description of which is beyond the
scope of this book. Another alternative is a complete
kit of parts that includes a double-sided printed-cir-
cuit board. Information about the kit may be obtained
by writing:

Micro Applications
P. O. Box 3568
Mission Viejo, CA 92692

61

WIRE-WRAPPING THE MICROCOMPUTER
BOARD

The wire-wrap technique of building the EZ-80
microcomputer board is shown in Fig. 7-3. A phenolic
“perfboard” measuring approximately 4 by 8 inches
(10.16 by 20.32 cm) is predrilled with a matrix of
0.042-inch (0.1 cm) holes with spacing of 0.1 inch
(0.25 em). This hole spacing matches the spacing on
wire-wrap sockets shown in the figure. The wire-wrap
sockets are semiconductor chip sockets with long
square pins. Once all the sockets have been mounted,
connections are made between pins by wrapping a
thin 30-gauge solid wire around a pin, running the
wire to the required connecting pin, and wrapping the
wire again. Multiple connections can be made to a
single pin.

The wire-wrapping technique offers several ad-
vantages. Sockets can be put quite closely together,
making a very “dense” board. Fabrication of a printed-
circuit board is not necessary. The wire-wrap connec-
tions can be made easily and efficiently. The disad-
vantages are increased susceptibility to noise from
close proximity of several types of signals and longer
construction times. ‘

The wire-wrap technique is perfectly fine for a
small microcomputer such as the EZ-80. The reader
should experience no difficulty in constructing the
microcomputer board if he or she follows the sug-
gested layout and carefully follows the wire-wrap list
of connections.

A completed wire-wrap version of the EZ-80 is
shown in Fig. 7-4. The board was constructed by using
a DIP plugboard (Vector Electronics 3677). This
plugboard has the same hole size and spacing as a
bare plugboard. It also has a ground and +5 V etch
that is interleaved on the board. This etch allows easy
connections of the ground and +5-volt power con-
nections to the sockets. The reader is urged to use
this board, or a similar type of board, to mount the

62

Ez-80 CONSTRUCTIONM

KEYBOARD

00O,
®O®
O®O®
RN B S O®O

LARGE DIGIT
DISPLAY

MICROCOMPUTER BOARD

— APPLICATIONS AREA |
| |
e e i e i e e e e e e e e |

POWER

SUPPLY

Fig. 7-1. Physical parts of the EZ-80.

sockets. A bare board may be used, but care must be
taken in using heavy wire for power connections with
soldered connections rather than wire-wrapping. The
bare board approach is recommended for experienced
builders of electronic projects only.

WIRE-WRAP: TOOLS

The only tool necessary for wire-wrapping is some
kind of manual wire-wrap tool, a wire-wrap “pencil,”
or a wire-wrap gun (see Fig. 7-5). The manual wire-
wrap tool is available for a few dollars, while a good
quality wire-wrap gun is available for $30 to $40.

Fig. 7-2. The EZ-80 microcomputer.

Chart 7-1. EZ-80 Parts List

Prototype Board
1 DIP Prototype board (Vector Electronics)
Power Supply Section
1 LM340-5 or 7805 regulator
Full-wave bridge rectifier
Electrolytic capacitor, 1 uF, 5V
Electrolytic capacitor, 1000 uF, 25 V
Cable clamp (optional)
6-32 machine screw and nut
Heat sink to fit 340-5 regulator
Bare and insulated wire
Semiconductor Integrated Circuits
1 MCM6810 random-access memory (RAM)
(Motorola)
1 2758 erasable programmable read-only memory
(or 2716 EPROM)
1 Z-80 microprocessor (2 or 4 megahertz)
1 8255 programmable peripheral interface (PPI)
1 MC14511 display driver
1
cl

1 4-segment LED display (or 4 LED displays)
74368 IC
1 T74LS04 IC
1 74371C
1 74LS05IC
1 MC4042 IC (Motorola)
2 DIP plug, 14-pin
1 1-kQ resistor pack (14-pin, 7 resistors)
1 330-Q resistor pack (14 pin, 7 resistors)
Sockets
2 24-pin wire-wrap
2 40-pin wire-wrap
8 14-pin wire-wrap
2 16-pin wire-wrap
Resistors/Capacitors
5 0.1-uF disc capacitors
1 3800-pF, 10-V capacitor
1 3.3-uF, 10-V electrolytic capacitor
1 22-uF, 10-V electrolytic capacitor
1 330-Q, 1/4-W resistor
3 10-kQ, 1/4-W resistors
2 10-kQ, mini pc board potentiometers
Chassis, Transformer
1 Slope-front chassis (optional)
1 8-12.6 Vac, 2-3-A filament (or doorbell) transforme
1 Fuseholder
1 1/4-Afuse
1 spst toggle switch
1 6-32 machine screws and nuts
Miscellaneous
Wire-wrap wire

1
1 Plastic sheet or bristol board
1 Copper adhesive sheet

Wire-wrap wire is inexpensive (about 25 feet pe
dollar) and available in all Radio Shack or other elec
tronic parts stores.

The technique of wire-wrapping is very simpl
Strip about one inch of insulation off the wire usin
wire strippers or the built-in stripper on some wire
wrap wire dispensers. Insert the stripped wire int
the end of the wire-wrap tool. Insert the tool over th

'ONSTRUCTION OF THE EZ-80

SOCKETS MOUNTED
ON REVERSE SIDE OF
BOARD

PHENOLIC "PERFBOARD”
PREDRILLED WITH
HOLES

BARE ENDS WRAPPED
AROUND PINS

30-GAUGE
INSULATED WIRE

Fig. 7-3. Wire-wrap construction.

in to be wrapped. (Dont press down too hard.)
ress the trigger of the gun or rotate the manual tool
o wrap the pin. The process and the completed wrap
re shown in Fig. 7-6. The completed wrap should
iave adjacent wraps close together with no gap, but
vraps should not be bunched, as shown in the figure.
Jp to three levels of wraps may be used on one pin.
‘erfect your technique by wrapping a dozen pins or
o before starting assembly.

Unwrapping is done by a manual unwrap tool or
iy brute force. A pair of long-nosed tweezers may
ie used to advantage in both unwrapping and “muck-
ng about” in the nest of wire-wraps.

Another tool required in construction is a small
oldering iron for making power and component con-
lections. A 30-watt iron will do nicely. Soldering is
Iso an easy process but requires a little practice.
Aake certain the iron is hot. Tin the iron by melting
older over the tip and then wiping the tip on a moist
ponge. The tip should be shiny when properly tinned.
Vhen soldering connections, use the minimum of heat

Fig. 7-4. Wire-wrapped EZ-80 board.

Fig. 7-5. Wire-wrapping tools.

and allow the solder to flow freely around the pin or
lead. A properly soldered connection will have a some-

what shiny appearance with no large clumps of solder

(see Fig. 7-7).

WIRE-WRAP: MOUNTING THE
SOCKETS AND PARTS

The following steps should be followed to mount
the semiconductor wire-wrap sockets. Refer to Chart
7-1, the parts list for the EZ-80.

1. Mount the 14 wire-wrap sockets on the board
in the positions shown in Fig. 7-8. If a bare board
is used, the sockets may be glued or epoxyed. If

i

BIT OF WIRE-WRAP TOOL

WIRE-WRAP
WIRE

STRIPPED (BARE) SEGMENT

OF WIRE PUSHED INTO

WIRE HOLE
WIRE-WRAP POST
CORRECT T00 LOOSE T00 TIGHT
WIRE-WRAP (NOT ENOUGH (TOO MUCH

PRESSURE ON TOOL) PRESSURE ON TOOL)

Fig. 7-6. Wire-wrapping technique.

Ez-80 CONSTRUCTIO

"SHINY” APPEARANCE OF

TIP AFTER TINNING

Iy

(B) Heat the component lead to be
soldered briefly (2 seconds).

a plugboard is used, secure each chip by solder-
ing the two opposing pins to the printed-circuit
“pads,” as shown in Fig. 7-9, or if no pad is
present, by a short wire-wrapping of the pin.

WIPE ON WET SPONGE AND
THEN "TIN” THE TIP BY
MELTING SOLDER

SOLDER

MINNNNE RN

(C) Apply thin rosin-core solder to junc-
tion. Ideally solder is meited by lead to
be soldered.

Fig. 7-7. Soldering technique.

shown in

possible.

(A) Use 30-watt soldering iron.

(D) Use solder and heat sparingly—iju:
enough solder for positive connectiol
Final joint should be shiny.

2. Mount the two potentiometers R1 and R2, s

Fig. 7-10. These two potentiometer

should be as close to the MC4024 at Al 1

__l T T
BB v B e = e
I IV O 2 4 [ool I L
24PIN SOCKET 40-PIN SOCKET Lo
le _ ; Pt
it “1"74505" ---------------- 3 o
: :" —————————————————————————————— T 1g-14PIN -~~~ - ': i
Pl 2758 8255 P
I ~"24-PIN SOCKET™~[=~ 1~~=~~~ 40-PIN SOCKET —=-=--1 --fi ResistoR} --—-=-------------- oo oo =
|)t demoooomooo o IS o PN e
! Vo
[o
| v fowcias1-3- - - 3300 REsts] - - - DISPLAY -} - =737 -} - T O ——— A I
Ul 16PIN__ §___LTOR14PIN|__ _lopLuG 14-PIN| _Jg 14PIN__) g taPN_ | J [
! N
b] - —-74368-~~4 1 --74L804 - -~ =~~~ -
I g 16PIN.__ | g 14PIN._) . N
[]
i 1t
||)
I e e e e e e ——————— N Pt
] 1 [
ot - Lo
| ! |
I

e b 4
(I J
S 2

TOP VIEW (BARE SIDE)

Fig. 7-8. Socket layout.

NOTES:

e = PIN 1 OF SOCKET
SOCKETS SHOULD STRADDLE
ETCH ON REVERSE SIDE
OF BOARD (NO PINS SHOULD
TOUCH COPPER STRIPS)

JONSTRUCTION OF THE EZ-80

SECURE SOCKET BY
SOLDERING OPPOSING PINS
TO "PADS"

ALTERNATIVE WIRE-WRAP Y) 4 ETCH
METHOD FOR PINS WITH ;
NO PADS

SHORT PIECE OF WIRE-WRAP

CUT CLOSE TO PIN

Fig. 7-9. Securing the sockets.

3. Mount the power supply components as shown
in Fig. 7-11.

4. Using short medium-gauge wires (No. 22),
solder the following pins to the ground bus of the
board, as shown in Figs. 7-12 and 7-13.

Al-5 Cc2-7
Al-7 C3-12

2 TWO POTENTIOMETERS
TWO PINS OF EACH MOUNTED ON TOP SIDE OF BOARD

SOLDERED TO ETCH STRIP

65
Al-9 D2-7
A2-29 D5-8
A3-1 El-7
B1-7 E2-8

5. Using short medium-gauge wires (No. 22), solder
the following pins to the +5-volt (V¢c¢) bus of the
board, as shown in Fig. 7-14.

Al-l C3-24
Al-14 D2-14
A2-11 D5-16
A3-24 El-14
B1-14 E2-16
C2-26

WIRE-WRAP: WRAPPING THE SOCKETS

At this point all connections have been made ex-
cept for the wire-wrap connections and several small
components which will be soldered later. The next
step is to wire-wrap all required connections. The
wire-wrap list given in Table 7-1 shows all necessary
wire-wrap connections (there are 128). To make the
connections, use as short a length of wire-wrap wire
as possible and follow the previous instructions on
wire-wrapping techniques. Take care to wrap the
right pins. The pins are oriented as shown in Fig.

-]
: // -------- 1 [m— e — oo T okt] -} LW
- T
DVAYa L | : ; : |
i - R
'—_——__—-‘l | P NEpIIOpE RSN O
L / i -
T | oo oo em o Tms s Bl 'kl ==]
ONE PIN OF EACH —==--=-- i P |
SOLDERED TO PAD ____——_ . Lo !
| L R P
It T 1S it S ettty B e :
L i Pl r T T i
____________________________ [. L e —————
L Tn [
: [: l
1L
! .

BOTTOM VIEW (ETCH SIDE)

Fig. 7-10. Potentiometer mounting.

J

EZ-80 CONSTRUCTION

(A) Top view (bare side).

(B) Bottom view (etch side).

CUT CLOSE ~
T0 BOARD o SOLDER POINTS
g SOLDER PONT o—e SOLDER POINTS
CONNECTED BY BARE
WIRE
COMPONENT o= SOLDER POINTS

CONNECTED BY
INSULATED WIRE

Fig. 7-11. Power supply component mounting.

el e e WSS S
[S B e S R ietbhal Nkt bbbl B R PPN P A
S — 1 E— S e e lr——
! ! 1)
____________________ I ey nrmmympr T m—————— [
I — e -
e —— R orh B
| | |
.' 1F, 25 : o
P —] N W =
L G U - — e .
| I b —— =
§
L B e B cpepapn Y ey BN s h Y
_________________ "
| |
!
1
}
]

| HEAT SINK

[——LM340-5

[——BRIDGE
RECTIFIER

CONSTRUCTION OF THE EZ-80

67

L GROUND

GROUND

GROUND

GROUND

BOTTOM VIEW (ETCH SIDE)

o——--¢ WIRE-WRAP CONNECTION

&——o JUMPER WIRE SOLDER CONNECTION
o-——-o¢ WIRE-WRAP ONE END.SOLDER THE OTHER
€===3» |NSULATED JUMPER ‘

Fig. 7-12, Socket ground connections.

7-12. Note the ground and Vgo connections that al-
ready exist.

WIRE-WRAP: CHECKING THE CONNECTIONS

At this point ali wire-wrap connections have been
made. Each pin of every socket should now be
checked for the proper number of wraps: none, 1, 2,
or 3, as shown in Table 7-2. These numbers are ex-
clusive of ground or Vgc connections. If the proper
number of wraps do not match the actual number
on the pin, review Table 7-1 to correct the connections.

The next step is to verify that all wire-wrap con-
nections have been properly made by “buzzing out”

C

SOLDER SHORT PIECE OF
KEEP UPPER PIN BARE WIRE TO PIN

FREE FROM SOLDER

Fig. 7-13. Pin to etch connections.

the connections from the socket side of the board.
Make a continuity tester as shown in Fig. 7-15, or
use a vom (volt-ohmmeter) or other device to check
continuity (inexpensive “continuity testers” are sold
at many electronic parts stores). Go down the list
of Table 7-1 again, checking each connection for con-

Chart 7-2. EZ-80 V../GND Pins

Grounds Voc
A1-5 Al-1
-7 -13
-9 -14
A2-29 A2-11
A3-1 -16
-12 -24
-14 -25
-15 A3-13
B1-7 -24
c2-7 B1-14
-35 Ci-1
C3-12 -2
D2-7 -3
D5-5 C2-26
-8 C3-21
L. EN-7 -24
o E241 D2-14
E2-8 D5-3
-15 -4
-16
E1-14
E2-16

£z-80 CONSTRUCTION

Table 7-1. EZ-80 Wire-Wrap List

Signal Wrap Pins Signal Wrap Pins Signal Wrap Pins Signal Wrap Pins
4024 Voo A1-13t0 A1-1 Al A2-31to C3-7 A3-12to A3-14 D4-10 to D3-2
1 MHz CLK A1-6 to B1-1 A2-31 to A3-22 A3-14 to A3-15 D5-15 to D4-6

___ Bi1-2t0 A2-6 A2-31 to C2-8 8255 GND C2-7 to C2-35 D4-9 to D3-11
100 Hz NMI A1-8 to A2-17 AO A2-30to C3-8 PA7 C2-37 to D2-1 D5-14 to D4-7
Z80 Vg A2-25 to A2-11 A2-30to A3-23 D2-1 to D2-2 D4-8 to D3-9
A2-24 to A2-25 A2-30 to C2-9 D2-3to D3-1 |PB5 C2-28 to E2-2
A2-16 to A2-24 D7 A2-1310 C3-17 PA6 C2-38to D2-4 |PB4 C2-22to E2-14
MREQ A2-19 to C3-18 A2-13to A3-9 D2-4to D2-5 ([PB3 C2-21 to E2-4
A2-19 to A3-11 A2-13 to C2-27 D2-6 to D3-12 [PB2 C2-20 to E2-12
IORQ A2-20 to C2-6 D& A2-101to0 C3-16 PA5 C2-39to D2-9 |PB1 C2-19 to E2-6
RD A2-21 to C2-5 A2-10to A3-8 D2-9to D2-10 |(PBO C2-18to E2-10
WR A2-22 to C2-36 A2-10to C2-28 D2-8 to D3-4 |74368 GND E2-8t0 E2-1
A2-22 to A3-16 D5 A2-9to C3-15 PA4 C2-40t0 D2-12 E2-1to E2-15
A15 A2-5to B1-3 A2-9 to A3-7 D2-12to D2-13|PC7 C2-10to E1-2
Al4 A2-4t0 B1-5 A2-9 to C2-29 D2-11t0 D3-6 |PC6 C2-11to E1-4
A13 A2-3to B1-9 D4 A2-7 to C3-14 MC14511 Vo D5-16to D5-3 [PC5 C2-12t0E1-6
A12 A2-2 to B1-11 A2-7 to A3-6 D5-3t0 D5-4 |PC4 C2-13to E1-8
Al A2-1to C3-20 A2-7 to C2-30 MC14511 GND D5-5toD5-8 |PC3 C2-17to E1-10
A2-1to A3-10 D3 A2-8 to C3-13 PA3 C2-1t0D5-6 |PC2 C2-16to D1-5
A10 A2-40to C3-19 A2-8 to A3-5 PA2 C2-2 to D5-2 D1-5t0 C1-14
A9 A2-39to C3-22 A2-8 to C2-31 PA1 C2-3toD5-1 |PC1 C2-15t0 D1-6
A8 A2-38 to C3-23 D2 A2-12 to C3-11 PAO C2-4 to D5-7 D1-6to C1-13
A7 A2-37 to C3-1 A2-12 to A3-4 LED Anodes D5-13 to D4-1 |PCO C2-14t0 D1-7
A6 A2-36 to C3-2 A2-12 to C2-32 D4-14 to D3-14 D1-7 to C1-12
A2-36 to A3-17 D1 A2-1510 C3-10 D5-12to D4-2 |KB Address B1-4 to D1-1
A5 A2-35 to C3-3 A2-15to A3-3 D4-13 to D3-13 B1-6to D1-2
A2-35 to A3-18 A2-15to C2-33 D5-11 to D4-3 B1-8to D1-3
Ad A2-34 to C3-4 DO A2-14t0 C3-9 D4-12 to D3-3 B1-10to D1-4
A2-34 to A3-19 A2-14 to A3-2 D5-10to D4-4 {KB Resistors C1-1toB1-14
A3 A2-33 to C3-5 A2-14 to C2-34 D4-11 to D3-10 Ci-2t0 Ci-1
A2-33 to A3-20 2758 Vo, C3-24 to C3-21 D5-9 to D4-5 C1-3to C1-2
A2 A2-32 to C3-6 6810Vy; A3-24to A3-13

A2-32 to A3-21

6810 GND A3-1 to A3-12

128 total wraps

Ve

Ve

Vee

Vee

BOTTOM VIEW (ETCH SIDE)

o——~e WIRE-WRAP CONNECTION

*——e

JUMPER WIRE SOLDER CONNECTION

@ ——-8¢ WIRE-WRAP ONE END. SOLDER THE OTHER

Flg. 7-14. Socket V, connections,

CONSTRUCTION OF THE EZ-80

69

Table 7-2. Pins vs. Wire-Wrap

Pins A1 A2 A3 B1 C1 C2 C3 D1 D2 D3 D4 D5 E1 E2

O+ 0000 —- 00000 —

-k bt N N i A e e 4 a4

n
n
= = et 2 RPN WOOOOONNON == NO 2= W0WwWwWw-—=WWwWww-—= =N

—_
—

= I = Rl G G
- m 0000000 O NN
OO0OO0COO0OOCOMNMNN = = 2o
O =N =L AN O~ == =N
el o N = R e R
Ch b ek ek ik od b O b e e
O e JJL " G Gyl G G UV AP, Y
OO0 w00+ 0O0=20—20
O=2 202040~ 0O0—=+0=20=N

i S G = O i I G G WV U U G

[S U UG U U G PO (UG PO o T T T G v S G S S S O T i QU Gy GV N S S G POy

TEST
POINT 1

TEST
POINT 2

SWITCH LEADS UNTIL
LED LIGHTS

9-V “TRANSISTOR

BATTERY

COMMON PINS
N\ S

3300 Ya-W
RESISTOR

S = SOLDER CONNECTION

Fig. 7-15. Continuity tester.

tinuity from the top side of the board. Clip leads and
common pins will be a help in getting into the IC
socket pins.

Use the same technique in checking the pins for
Voo and ground connections. Put one lead of the
continuity tester on the ground or Ve bus and use
the other to probe the IC socket. Refer to Chart 7-2
for appropriate pins.

WIRE-WRAP: FINAL CONNECTIONS

The microcomputer board is now wired except for
several small components. These components should
be soldered to the pins of the IC sockets after posi-
tioning between the pins, as shown in Fig. 7-16. Make
certain that the polarities on the capacitors are as
indicated. The polarity is represented by a “+” sign
or “—” sign on the body of the capacitor.

Complete the wiring to potentiometers R1 and R2
as shown in Fig. 7-17.

Connect disk bypass capacitors (0.01 uF each)
from the Voo bus to the ground bus at the points
shown in Fig. 7-18.

The microcomputer board is now wired. The next
step is to construct the simple power supply for the
EZ-80. Continue at the “Power Supply Construction”
section.

WIRING THE MICROCOMPUTER PC BOARD

The printed-circuit board layout of the EZ-80 is
shown in Appendix F of this book. If you have pur-
chased a kit, complete instructions are given to make
the solder connections on the board. If you are etch-
ing your own board, then presumably you know as
much (or more) than the author about construction
techniques for pc board construction. The one ob-
vious piece of advice that can be given is to use a
socket for the 2758 or 2716, if you wish to use sev-
eral applications programs or write your own appli-
cations programs.

POWER-SUPPLY CONSTRUCTION

The following section assumes that the reader is
using a chassis similar to the one shown in Fig. 7-2.
If another is being used, mounting of the components
may be somewhat different to leave room for the
microcomputer board.

The power supply schematic is shown in Fig. 7-19.
It is a simple full-wave bridge power supply with
all components from the bridge on mounted on the
microcomputer board. The remaining components are
the line cord, on/off switch, fuse and fuse holder, and

70 EZ-80 CONSTRUCTION

3-uF CAPACITOR 300-pF CAPACITOR 22-uF CAPACITOR
PIN 10 + NO POLARITY PIN 26 +

"}SOLDER 70 Vg ETCH !
= J

|: 10K RESISTOR 1330-0 RESISTOR
1 (NO POLARITY) 1 (NO POLARITY)

_BOTTOM VIEW (ETCH SIDE)

Fig. 7-186. Final component soldering.

transformer. Use the following steps to mount these 2. Mount the fuse holder, on/off switch, and grom-

components. met for the power cord as shown in Fig. 7-20.
3. Mount the transformer to the chassis as shown

, in Fig. 7-20.
1. Drill five holes in the chassis, as shown in Fig. 4. Solder the power line cord and primary (black)
7-20. transformer leads to the fuse holder and on/ofl
WIRE-WRAP WIRE
PREVIOUSLY SOLDERED SOLDERED ON ONE
CONNECTIONS /‘7 END, WRAPPED TO PINS ON OTHER

10K RESISTORS
SOLDERED TO GROUND ETCH

BOTTOM VIEW (ETCH SIDE)

Fig. 7-17. Final potentiometer wiring.

CONSTRUCTION OF THE Ez-80

71

TOP VIEW (BARE SIDE)

ec—>e DISC CAPACITORS
1-uF — SOLDER

Fig. 7-18. Bypass capacitors.

switch as shown. Use short pieces of spaghetti or
heat-shrinkable tubing to cover exposed metallic
contacts on the switches and fuse holders (see
Fig, 7-21).

WARNING!

110 voLts Ac caN kxr! MAKE CERTAIN
THAT THERE ARE NO UNINSULATED METAL
PARTS AND THAT NO POWER-LINE CONNEC-
TIONS CONTACT THE CHASSIS.

The power supply is now wired. To check the opera-
tion of this portion of the power supply, use a 12.6-volt
light bulb (or vom), as shown in Fig 7-22. Attach
the bulb to the secondary leads of the transformer
by clip leads or soldering. Plug in the line cord and
turn on the on/off switch. The bulb should light. If
the bulb does not light, unplug the line cord and

ON/OFF

recheck the connections (is the fuse in the fuse-

holder?).

POWER SUPPLY/MICROCOMPUTER
BOARD TESTING

The power supply can now be integrated with the
microcomputer board. Mount the microcomputer
board to the chassis with two screws, as shown in Fig.
7-23. After verifying the mounting, remove the board
and solder the two secondary transformer wires to
the board and remount the board.

With the microcomputer board mounted on the
chassis, perform the following steps to verify that
power connections have been properly made.

1. Plug in the line cord.
2. Turn on the power switch and then quickly
turn off.

BRIDGE
RECTIFIER

8-T0-12.6-Vac FILAMENT

V

9 (¥H
J_ LM340-5 T("*'S Ve

TRANSFORMER
270 3A

1uF 6V
Twoom 25V I
—— GROUND

=

Fig. 7-19. EZ-80 power supply schematic diagram.

72

Ez-80 CONSTRUCTION

41/2-in

11.43cm
l——1 3/4-in/4.44cm

~—1 3/8-in/3.49cm
| 7/8-in
2.22cm

— 4 1/2-in
1.27¢m l__

3/16-in HOLES
1/4-in HOLE
.635¢m

' h
—_— K ¥

(I
L_as

7/16-in HOLE
1.1llcm

1/2-in HOLE
1.27cm

11/2-in

3'810"14]_

1/2-in

1.27cmL

L e L

|

FUSE I'{OLDER
TRANSFORMER
SWITC

GROMMET D

o

\J

Fig. 7-20. Power supply paris mounting.

3. Remove the fuse. It should be intact. If not,

review the power supply and wire-wrap con-
nections for a short circuit,

. Turn on the power switch. There should be no

visible smoke (really!). There should be no
“hot” smell when you are sniffing cautiously
above the power supply components.

Cautiously test the regulator chip and bridge
rectifier as you would a hot iron. If a 12-V ac

transformer is being used, the regulator may be

quite hot; use largest practical heat sink. If a
lower voltage transformer is being used, the regu-
lator will run cooler.

. Leave the power on. With a voltmeter, oscillo-

scope, logic probe, or the device shown in Fig.
7-24, check every pin on the top of the micro-
computer board. A voltage of +5 volts should
be present only for the V¢ pins shown in Chart

CENTER TAP
(UNUSED)

12.6-Vac LEADS

SWITCH

TRANSFORMER

FUSE HOLDER

§ = SOLDER

Fig. 7-21. Power supply wiring.

CONSTRUCTION OF THE EZz-80

12V BULB

Fig. 7-22. Power supply testing.

CARDBOARD OR PLASTIC
INSULATION
TRANSFORMER
e
'n
FRONT | (BARE AREA) REAR
l CHOOSE PLACEMENT OF
@ HOLES SO THAT SCRew
. DOES NOT G0 THROUGH
; Ve OR GROUND ETCH
. AND DOES NOT SHORT
; OUT CIRCUITRY
! —— HEAT SINK \@
:
!
A S
BEND DOWN SIDES F
t U CLEARANCE
REAR
- Il I
TWO 440 OR 6:32 CARDBOARD
MACHINE SCREWS TO OR PLASTIC
HOLD PC BOARD IN PLAGE INSULATION

Fig. 7-23. Microcomputer board mounting.

73
ALTERNATIVE
TEST LEAD
S "ALLIGATOR" CLIP
~. TO GROUND OF POWER

N/ SUPPLY

ANY SIZE WIRE

S

SINGLE LED

SWITCH LEADS UNTIL%

LED LIGHTS WHEN ~ ©
CONNECTED BETWEEN
Vo AND GROUND
OF POWER SUPPLY

330, 1/4-W
RESISTOR

S = SOLDERED CONNECTION

Flg. 7-24. Power pin tester.

7-2 and pins A2-6, A2-26, and B1-2. From 2.5
to +5 volts will be present on pins Al-2 and
Al1-12. If +5 V is present for other pins, recheck
the power supply and (especially) the wire-
wrap connections.

7. Plug in the semiconductor ICs (except for the
2758 or 2718) as shown in Fig. 7-8. Note that
pin 1 of the IC is always oriented to the left of
the socket. Pin 1 on the chip is “keyed” by a
notch on the pin 1 side of the chip or by a “dot”

SIMPLE SWITCH
RESULTS FROM PRESSURE
ON JUNCTION OF TWO STRIPS

1 2 3

Y RO A

\x "4 &»é "5 %x\ 6"

CSPROW LINES
(COPPER STRIPS) A “7" e e
X 7 \% 8 ‘o\ot 9

\o}:ENTER"

L %"Bsn \’& g

3 COLUMN LINES
(COPPER STRIPS)

Fig. 7-25. Keyboard schematic diagram.

74

Ez-80 CONSTRUCTION

3in
7.62cm

4in

10.16¢cm
| 3/din ‘l
1.90cm "FLAT” SOLDER
1 1/2in
3.8lcm]
2 1/4in
571cm

WIRE-WRAP WIRE
Fig. 7-26. Keyboard fabrication 1.
over the pin 1 position. The chip pins may have

to be bent slightly to fit the socket (use a table
surface to bend all of them at the same time).

KEYBOARD CONSTRUCTION

To reduce costs of the EZ-80 a simple but effective

keyboard is constructed from thin sheets of copper

(available from most electronic parts stores). The

schematic of the keyboard is shown in Fig. 7-25. The
keyboard functions by connecting a row line with a
column line, as shown in the figure. When key 5 is

pressed, for example, lines 5 and 2 will be connected.
To fabricate the keyboard, follow these steps:

1. Cut a 4 by 3 inch (10.16 by 7.62 cm) composi-

tion board as a base. Lay three strips of adhe-
sive-backed copper strips on the base, as shown
in Fig. 7-26.

. Drill three small holes as shown. Push the

“stripped” end of a 12-inch (30.48 cm) wire-
wrap wire through each hole. Carefully solder
the three wires to the copper strips as shown.

COPPER STRIPS
VISIBLE
UNDERNEATH

—3in 7.620m——J’

0 18' 1/2in
. 8in SQUARE HOLES
CENTERS 5 1.27em
2.03cm '
4
4in
10.16¢m
.| 34in |
190cm[
1 1/2in PLASTIC OR
3.81cm BRISTOL BOARD
2 1/4in
571cm B

Fig. 7-27. Keyboard fabrication 2,

. Cut a 4 by 3 inch (10.16 by 7.62 cm) medium-

thickness (%: in=0.8 mm) plastic or bristol
board sheet. Punch or cut out % inch (1.27 cm)
diameter round holes or % inch (1.27 cm) wide
square holes as shown in Fig. 7-27. Lay the
sheet over the base and verify that the holes
align with the copper strips.

. Cut four adhesive-backed copper strips. Care-

fully solder a 12-inch (30-cm) wire-wrap wire to
each strip as in Fig. 7-28. Lay each strip over
a second 3 by 4 inch (7.62 by 10.16 cm) thin
plastic or paper sheet as shown in the figure.

. Drill four small holes in the base and thread

the four wires through them, positioning the
new sheet face to face with the sheet containing
the holes, as shown in the figure.

. The topmost plastic sheet is the face of the

keyboard. The plastic can be marked on the
reverse side at this point, if the keyboard is to
be mounted elsewhere than on the slope-front
chassis. A pattern for the marking is shown in
Fig. 7-29. If the slope-front chassis is to be
used, the keyboard face plate is left blank.

. Drill four small holes as shown in Fig. 7-30.

Using four small screws and nuts, compress the
keyboard sandwich.

. Mark the seven wires with row or column using

tape or other means. Bundle the seven 12-inch
(30-cm) wires together using “cable-ties,” elec-
trical tape, or thread. Once bundled, cut to the
same length (see Fig. 7-31).

. Solder the seven wires to a small 14-pin “dip-

CONSTRUCTION OF THE EZ-80

75

WIRE-WRAP
WIRE

N N NN

\

PLASTIC OR BRISTOL
BOARD

FLAT SOLDERED
/ CONNECTION

ADHESIVE
COPPER STRIPS

—
.8in (2.03cm)
CENTERS

\

\
THIN PLASTIC OR
PAPER

Flg. 7-28. Keyboard fabrication 3.

plug,” as shown in Fig. 7-32. Remove the wire
labels.

10. The keyboard can now be tested by using a
continuity tester connected to the appropriate
row and column and checking the key depres-
sion, as shown in Fig. 7-33.

LED DISPLAY

The microcomputer board as built will operate with
a four-digit LED display. The one we are using in the
EZ-80 is the HP5082-7404 display, which is a 12-pin
LED display that fits the 14-pin socket of D3. The dis-

olololF ™
olololR~
ololo
ololc

3/4in

~11.90cm

1 1/2in—
3.8lcm

2 1din
571cm

Fig. 7-29. Keyboard markings.

play chip may be plugged directly into D3 if the
physical layout of the EZ-80 is the “bare bones” ver-
sion. The second alternative is to fabricate a single-
chip display assembly that is mounted on the front
panel of the EZ-80. The third alternative is a larger
LED display. The larger LED display uses four com-
mon-cathode LED displays mounted in four wire-
wrap sockets. This four-chip assembly is shown in
Fig. 7-34.

4-40 NUT(4)
4-40 LOCKWASHER(4)

4-40 SCREW(4)

KEYBOARD
SANDWICH
(FRONT)

Fig. 7-30. Keyboard fabrication 4.

76

EZ-80 CONSTRUCTION

/CUT TO EQUAL LENGTH

SO

BUNDLE INTO A CABLE BY
LAGING WITH THREAD,
< USING CABLE TIES, OR

USING TAPE

KEYBOARD
SANDWICH
(REAR)

Fig. 7-31. Keyboard_ fabrication 5.

The single-chip display is bright, but small. The
four-chip display is much larger, but sacrifices some
brightness. The choice is up to the reader.

To make the single-chip (7404) display, assemble
a 14-pin dip plug and cable from wire-wrap wire, as
shown in Fig. 7-35. The pins of the display chip may
be soldered directly to the wire-wrap wires (solder
quickly to avoid excessive heat!). Bundle the cable
by cable ties, tape, or thread, and set it aside.

To make the four-chip display, break a small piece
of perfboard to the dimensions shown in Fig. 7-36.

14-PIN DIP "HEADER"
(TOP VIEW)

el
H

©
N TEWN - —
=

M
Vs
7

——TO PIN 1

KEYBOARD O TOPIN2Z
SANDWICH
(REAR) O1+—TOPIN 3

Felialt

TOPIN TOPIN TO PIN
7 6 5

Fig. 7-32. Keyboard fabrication 6.

@ : : f\ DIP HEADER
\,
@ @ @ o@\b | (BOTTOM VIEW)
o o |2
o o [3
O] |Hli=
o \\o |5
o \b |6
oe| [
CONTINUITY
TESTER OR VOM
CONTINUITY (SEE FIG. 7-15)
PRESS BETWEEN PINS
1 15
2 16
3 17
4 25
5 26
6 27
7 35
8 36
9 37
BS 45
0 46
ENTER 47

Fig. 7-33. Keyboard testing.

The board breaks easily if it is aligned over the edge
of a desk and pressure is put on the unsupported sec-
tion. Use four 14-pin wire-wrap sockets. Attach the
sockets to the board by wire-wrapping the pins shown
in Fig. 7-36. Mark the wires and solder to the dip
plug. Remove the labels and bundle the wires by
cable ties, tape, or thread. Mount the LED chips so
that the 10 pins of the chip are in the inside 10 of the
socket, leaving two socket pins on each end unused.
The decimal point of the displays should be oriented
as indicated. Set the assembly aside.

Fig. 7-34. Four-chip display.

CONSTRUCTION OF THE EZ-80

77

HP5082-7404 OR
EQUIVALENT
(BOTTOM VIEW)

¢4 —§

o
&
©

T

NOTCHED®
N TO MARK._ |
PNT

sH—=
go'——d—m

c2
|
L
12
DIP "HEADER"
(TOP VIEW)

=

3
T

o
2 —Ho

|
c3
Fig. 7-35. Single-chip display fabrication.

EZ-80 PANEL

The suggested layout for the slope-front chassis is
shown in Fig. 7-37. Twelve %-inch (1.27-cm) holes

are drilled in the front panel for key depressions. The
keyboard sandwich will be attached to the rear of the
panel as shown in the figure. A rectangular hole to
fit either the single-chip LED display or the four-
chip LED display is cut into the panel, as shown in
Fig. 7-37. The four-chip display is mounted by two
screws as shown in Fig. 7-38. The one-chip LED dis-
play can be mounted by securing a thin plastic strip
with sticky tape as shown in the figure. In both the
one-chip and four-chip versions of the display, a piece
of red plastic faceplate material should be used be-
tween the display and panel to act as a filter. This
can be glued to the rear of the panel or attached with
screws as shown.

The panel overlays are shown in Fig. 7-39. The
overlays can be photographically produced or can be
drawn onto a paper stock with the help of transfer
sheets and mounted behind protective plastic sheets.
Circles of pressboard or other material should be
glued to the back of the keyboard overlay to contact
the keyboard through the panel. This prevents ex-
cessive travel to make contact with a key on the key-
board sandwich. *

ALTERNATIVES TO FLASHY PANELS!

Bear in mind that the preceding description is only
one way to lay out the EZ-80 panel. The keypad is of

-—PIN-QUT OF
10f 0a o]l DISPLAY CHIP
glob fol2 (BOTTOM VIEW)
8loc go |3
710 eo |4
6| OCATH do |5
THESE ROWS ON
~DECIMAL PT END SOCKETS NOT USED
SOCKET SOCKET SOCKET SOCKET T
WIRE-WRAP —1 2z 3 4
CONNECTIONS o] oo 00 o0]
(BOTTOM VIEW)

DECIMAL PT END

abccd degfel c2 cl \
PERFBOARD
T ? °|2 i ‘|’ T 2 14in X 718 in
571cm X 2.22cm
1l 1L L 1 1L 1 _
4 13 12 11 10 9 8 DIP "HEADER”
(TOP VIEW)
1 2 3 4 5 6 1
T T TT T
B |
cl e c ¢3 ¢4

Fig. 7-36. Four-chip display fabrication.

78

Ez-80 CONSTRUCTION

TWO 1/8-in (0.31cm) D

HOLES (LARGE DISPLAY
ONLY) SPACED FOR FOUR 1/8-in TWELVE 1/2-in (1.27cm)
LED BOARD (0.3lcr{)) D HOLES D HOLES (SIEE FIG 7-30)

REAR-MOUNTED RED
PLASTIC FILTER®

-

(e]

Pt T ——

CUT TO FIT
CUT TO FIT SMALL DISPLAY*

LARGE DISPLAY*

Todo

1/4in 0.63cm

e

1/4in 0.63cm

OO0

00O
OO0

(o] o

‘—~ 1/2in 1.27cm

5 1/8in X 6 7/8 in PANEL
13.01cm X 17.46¢cm
*POSITION ON PANEL
NOT CRITICAL

/] 1/2in
3in X 4in 1.27cm
7.62cm X 10.16¢cm

KEYBOARD SANDWICH *

I
e

Fig. 7-37. Panel layout.

such a construction that it can be mounted directly
on the slope-front or other panel and the wires may
be routed through a small hole at the back of the
keypad. Similarly, the single-chip LED display may
be mounted so that it projects through the panel.
Another alternative would be to mount the single-
digit in the D3 socket and the keyboard elsewhere,
for a system that is not required to be as aesthetically
pleasing as the one described here. (After all, one
of the chief reasons for dressing up the EZ-80 in this
case was to sell books!)

THE EZ-80 APPLICATIONS AREA

The fifth part of the EZ-80 system shown in Fig.
7-1 is the applications area. The result of the con-

ONE-CHIP FOUR-CHIP
DISPLAY MOUNTING DISPLAY MOUNTING
RED PLASTIC FRONT FRONT RED TWO 4-40
(GLUED OR TAPED PANEL PANEL PLASTIC SCREWS

TO PANEL BACK)

Fa¥ Y /
TRy ST, TTT

o

irsuzalnnluz IR I L ALLARRRRRRRRE
OO0

)
4 DISPLAY

CHIPS
THIN PLASTIC STRIP \ \
AT e s
SOCKETS ~ PERFBOARD

Fig. 7-38. Display mounting.

struction thus far has been a complete general-purpose
microcomputer (albeit with limited RAM memory).
The only thing remaining to convert the general-
purpose capability of the EZ-80 into a specific applica-
tion is an applications program and some additional

EZ-80

OO
OO
OO
®© €3

NOTES: 1. CUT OUT DISPLAY
OVERLAY TO FIT DISPLAY
TYPE USED

2. DISPLAY AND KEYBOARD
OVERLAYS ARE MOUNTED
WITH SCREWS USED IN
ASSEMBLIES

Fig. 7-39. Panel overlay.

CONSTRUCTION OF THE EZ-80

79

“hardware.” Both the applications programs and
hardware are covered in Section 3 of this book. The
additional hardware required varies with the applica-
tion. In all cases it is minimal. An application such as
a telephone dialer involves only an additional small
relay. The music synthesizer requires a resistor net-

work, an audio amplifier chip, and a small speaker.
The layouts of the wire-wrap and printed-circuit
boards are designed so that most of the additional
circuitry can be added on the microcomputer board.
All of the additions to the basic microcomputer board
will be discussed in Section 3, “EZ-80 Projects.”

CHAPTER 8

Programming the EPROMs

The EZ-80 uses a 2758 or 2716 erasable program-
mable read-only memory (EPROM). The 2758 holds
1024 bytes of instructions or data, while the 2716
holds twice that amount—2048 bytes. In the EZ-80
the EPROM holds either the applications program(s)
or diagnostic program. Complete listings of the ap-
plications programs are provided in Section 3 of this
book. The diagnostic program is described in the fol-
lowing chapter of this section; the diagnostic is used
to test the functioning of the EZ-80.

There are several approaches that may be used to
program the 2758 or 2716. The EPROM(s) may be
programmed by the manufacturer’s distributor, by a
computer store with EPROM programming capability,
by a friend who has an S-100 EPROM programmer or
a “programmer” on another type of computer system,
or by the use of an easy-to-build EPROM program-
mer described in this chapter. We'll discuss all ap-
proaches, and you can decide which is best for you.
Erasing the EPROM is done by exposing the EPROM
to strong ultraviolet light. Well also discuss the
methods of erasure in this chapter.

THE 2758 VERSUS THE 2716

Which EPROM should be used in the EZ-80, the
2758, or the 27167 The 2758 EPROM is an upgrade
of the 2708 EPROM, a device that required three
power supply voltages for operation and a sophisti-
cated programming method. The 2716 is another
member of the same family and may prove to be more
popular than the 2758. The price of the 2716 is about
60 percent more than the 2758 for double the memory
size. If you intend to use the EZ-80 as a single dedi-
cated microcomputer for one or two applications, then
the 2758 may be your best bet. If your goal is experi-
mentation or running several applications, then the
2716 will provide more EPROM memory for the ap-
plications programs. Review Section 3 to determine
how much memory you will require for your appli-
cations software.

80

The diagnostic program described in the next chap-
ter is a good place to start for EPROM programming.
Once you have obtained a “burned-in” version of the
EZ-80 Diagnostic, you may wish to retain the EPROM
so that the Diagnostic can be run at a later time to
verify that the EZ-80 is still operative. For this reason
it might be wise to burn-in the Diagnostic on a 2758.

A complete set of applications programs can be
programmed on a few EPROMs. Different applica-
tions can be swapped at will in the EZ-80 by plugging
in the required EPROM. You may wish to keep several
EPROMs for permanent copies of the applications
programs described here and for experimentation.

If you want to plug in different EPROMs, a “zero- in-
sertion-force” EPROM socket can be used in the EZ-80.

The only difference in operation between the 2758
and 2716 is that the A10 address line is always a logic
zero when the 2758 is used; locations 1024-2047
(400H-7FFH) are never addressed.

DISTRIBUTOR PROGRAMMING OF EPROMS

The first approach to programming the EPROMs
used in the EZ-80 is that of having the manufacturer’s
distributor perform the programming. Distributors
for Intel (the primary source for the 2758 and 2716)
are located in all major U.S. and international cities.
Information about the nearest distributor may be
obtained by contacting Intel Corporation, 3055 Bow-
ers Avenue, Santa Clara, CA 95051. The distributor
is naturally anxious to sell you parts but in many
cases will program EPROMs at a very reasonable cost
(less than five dollars), even if the EPROMs are not
purchased from him or her. The distributor will prob-
ably program them free if they are purchased from
his or her supply.

The distributors normally have a computer system
in-house on which they can easily and quickly pro-
gram the EPROMs. The only thing required from
you is a listing of the program to be burned in, a
“paper tape” version of the program, or a punched-

PROGRAMMING THE EPROMS

81

card version of the program. Burning-in the program
from a listing will be more expensive than supplying
the distributor a paper tape or punched-card version
of the program. The paper tape copy of the program
may be produced by typing the program on a Tele-
type such as one used in some home computer sys-
tems, or for Telex. The punched-card version is
punched on standard 80-column computer punch
cards. Possible sources for access to either a Teletype
or card punch are computer clubs (Teletypes), busi-
ness (Teletypes or card punches), high schools or
universities (Teletypes or card punches for computer
installations), computer stores (Teletypes), or key-
punch services (punched-card service).

The formats used for the paper tape or punched
cards vary with the installation at the distributor. It
is best to contact the distributor to find out his or her
exact requirements. The format will either represent
the program as a series of binary values (P for 0, N
for 1) or as a series of hexadecimal digits. Either
form can be generated from the applications or diag-
nostic program supplied in this book.

The disadvantages of programming the EPROMs
by this method, of course, are the inconvenience of
preparing and delivering the listings, tapes, or
punched cards, the waiting time before the EPROM
is prepared, and the expense of having the work done
by the distributor. Another decided disadvantage is
the fact that there is no way to verify that the data
burned into the EPROM is truly correct once the
EPROM has been delivered.

Fig. 8-1. EPROM programmer for
personal computer.

COMPUTER STORE PROGRAMMING OF
EPROMS

The second approach to programming EPROMs
is to enlist the aid of a computer store. As the reader
probably knows, there are hundreds of computer
stores throughout the U.S. and internationally. Many
sell EPROMs and some will program the EPROMs
free or at a reasonable price. Here, again, it is neces-
sary to check with the computer store to determine
the exact format of the source document required. It
will probably be in hexadecimal format, as are the
listings in this book.

PROGRAMMING THE EPROMS ON A
PERSONAL COMPUTER SYSTEM

The third approach to programming the EPROMs
for the EZ-80 system is to use an EPROM programmer
on a personal computer system. There are many types
available and most will program both 2758s and 2716s.
Fig. 8-1 shows such a programmer designed for the
“S§-100” series of personal computers. Programmers
such as this are available for S-100 systems, the
popular KIM-1 microcomputer, the Radio Shack
TRS-80™ computer system, and others. In addition,
numerous articles have appeared in the personal com-
puter magazines, such as Byte and Kilobaud Micro-
computing, for inexpensive EPROM programmer
designs that may be constructed and used on most
personal computer systems. Good sources for access

Courtesy Optimal Technology, Inc.

82

EZ-80 CONSTRUCTION

to such a programmer are computer clubs in your
area.

A SIMPLE EPROM PROGRAMMER

If the reader does not care to program the EPROMs
for the EZ-80 by any of the above methods, or if the
reader does not have his or her own personal com-
puter with a programmer, then he or she may choose
to build the simple and inexpensive EPROM pro-
grammer described here. It may be used to program
either 2758 or 2716 EPROMs.

An illustration of the EZ-80 Programmer is shown
in Fig. 8-2. Before we discuss the operation of the
Programmer, let’s discuss the operation of the 2758/
2716 once more. Fig. 8-3 shows the pinout of the
2758/2716. Lines A9-A0Q are the address lines of the
chip. We know that 10 address lines can address 1024
unique locations from 00 0000 0000 through 11 1111
1111. In the 2716 an eleventh address line, Al0, re-
places the AR input of the 2758. The 2716 can there-
fore address 2048 locations from 000 0000 0000
through 111 1111 1111.

The address lines are used during operation of the
2758/2716 in the EZ-80 to determine the location
from which data will be read. In the Programmer they
are used for exactly the same purpose when verifying
data contained in the chip. In addition, they are used
to select the location to be programmed (written to)
during the burn-in process.

There are eight data lines in the 2758/2716, desig-
nated O7-00. In the EZ-80 these data lines carry data
read from the location addressed by A9 (A10)-A0.
In the Programmer these lines also carry data to be
written into the EPROM.

The Veo power supply input to the 2758/2716 re-
mains the same during normal use or programming. It
supplies +5 volts dc to the circuitry within the chip.
The Vpp power supply input, however, is changed

Fig. 8-2. EZ-80 programmer.

Vee

2L s 00 febscgmis’)
2y 01 |22
11 DATA
Y 0z . OUTPUT
ALl O 033 | (WHEN RUNNING
” PROGRAM) OR
04 INPUT
MREQ —& 1 TE/pam 71 2 s mm)mmus
06 18
y albadss duid . (rodan 1 Bl
! |
! |
! 9 |
L A0 —1 ariazsy 1 po |8
1
Lo lzeocabpaemmbnhSerpbdec, o
121 onp A2 -8
_| fedepty o
i L SR
10 ADDRESS
o] L f LINES
7
Y & N—

Fig. 8-3. Pin out of 2758/2716.

from +5 volts de to +25 volts dc during programming,.
This higher voltage is used to electrically program the
selected location in the EPROM.

The chip enable (CE) input is also changed dur-
ing programming. During normal operation in the
EZ-80 this signal is used to select or enable the chip
for a memory read. The memory request signal
(MREQ) is used for this function. During program-
ming, this input is used to perform the programming
of the data on O7-00 into the location addressed by
A9 (A10)-A0. Instead of a low input as during the
memory request, this input is brought from a low to
a high and back, or pulsed.

The last input, output enable (OE), is low (ground
or logic 0) during normal operation. It is a signal
that is used to select the EPROM (along with
MREQ) by address output All of the Z-80. OE is
high (logic 1) during programming,

The steps of programming a single location of the
2758 or 2716 are as follows:

1. Put the address of the location to be programmed
onto address lines A9 (A10) through AO0.

2. Put the 8 bits to be written on data lines O7
through OO0.

3. Put +5 volts on OE and +24 volts on Vep.

4. Bring input CE from low to high and back again
for 50 milliseconds (%o of a second).

PROGRAMMING THE EPROMS

N GZ+)ddp

(AS +) 2%

Md
YOLIINNODE ANV

et

NO

o —"—0N)

o440

143

ogan

3
2

<l

A4143A

[]
T 8
o=

4 J61S

QN9

861S S

818

O
\O

an

o0t

a8
EOA:

L1s

2aan

AAA

N_QAS

T
1 o1s

£0
£l g1s

€an

41

AAA

9 Am

TYOvL

WETT o
14 0

S0

51 £1s

#an

£l

1]

90

91 us

san

W

2]

<

L0

a s

941

AAA

2]

AAA

18 I3

wan

204

91

\A4

2]

b1

81

IN—

£l

1744/

aa
1-900L

. 08
ON N

35d |2 |1

o 12

LT chad

slgg 91 |€

14

%l
onet 31

v ¢

|
e N1

ddp

99
NONd3 14 v||laflf
91L2U8SLT

WhHr—a.

8 o1s

.|f’
W7

—————a_
N<w

e
e

Wi

b
o<~

A} ra——

|f’
Wiz

577 %
6v 72

01V 40 ¥V

]

PASI+

v _ vis
uo>

Pp

Fig. 8-4. Programmer logic diagram.

84

EZ-80 CONSTRUCTION

(Yain OR 0.63 cm TYPICAL)

CUT TO FIT S19 SLIDE
SWITCH (VRFY/PROG)

HOLE TO FIT PULSE SWITCH
(Y+in OR 0.63cm TYPICAL)

HOLE TO FIT ON/OFF SWITCH
(o}
HOLES TO FIT LEDS
(Yain OR 0.63cm TYPICAL)
(Yain OR 0.63cm TYPICAL)
HOLES TO FIT ADDRESS SWITCHES
(Y4 in OR 0.63cm TYPICAL)
o

HOLESTOFITDATASWITCHES\O O O O O O O O
\o OO0 0O00O0

g 00 0000 0000

N

o [o O

Fig. 8-5. Panel layout.

These steps are repeated for as many of the 1024
or 2048 locations as required. After all of the locations
have been programmed (or at any time), the locations
of the EPROM may be verified by the following:

1. Put the address of the location to be verified

onto address lines A9 (Al0) through AO.

2. Put ground (0 volts) on OE,

3. Put ground on CE.

4. Read the data from the addressed location on

lines O7-00.

DESCRIPTION OF THE EZ-80 PROGRAMMER

The EZ-80 Programmer implements the above steps
of writing and verifying data into a 2758 or 2716. The
logic diagram of the programmer is shown in Fig. 8-4.

Switches §1-S10 (and S1A) select the address to be
programmed. These are “single-pole double throw”
(spdt) switches that connect the address input to
either ground (0) or +5 volts (1). Switches S11-S18
are the data switches used to enter data into the
EPROM during programming. They are also spdt
and connect to ground (0) or +5 volts (1) to pro-
gram a zero or one into the location. These switches
also have.a center position which connects to neither
contact.

Switch S19 is a three-pole double-throw switch that
switches off Voc and ground from the data switches
during programming and changes the OE input from
Voe (PROGRAM) to ground (VERIFY).

Data that is to be written to the EPROM or that

is read from the EPROM is displayed on eight LEDs.
LEDs are essentially diodes and cannot be directly
connected to a voltage level, as they will burn out
from excessive current. Resistors R2-R9 limit this
current. The resistors connect to the 7404 inverters.
As the data coming from the EPROM outputs or from
the input data switches is the wrong polarity to light
the LEDs, the data is inverted from zeros to ones
and ones to zeros to light the LEDs for ones and ex-
tinguish them for zeros. They also serve to amplify
the power level of the signals to drive the LED:s.

The two inverters conected to S20 provide a single-
pulse output from the switch. Any switch has a cer-
tain make/break bounce and it is necessary to derive
a single pulse during this period of switch bounce.
The input at pin 1 of the 74123 chip is a single pulse
when the puLse switch is pressed. This single pulse
enables the “one-shot” 74123 which produces a (rela-
tively) precise 50-millisecond pulse that is input to
the CE input of the 2758/2718.

CONSTRUCTION OF THE EZ-80
PROGRAMMER

The Programmer may be constructed in any suit-
able chassis. A plastic box was used for the prototype,
as shown in Fig. 8-2. The components for the Pro-
grammer were mounted directly on the “perfboard”
of the box as shown in the figure. Wire-wrap sockets
were used for the components, although there is no
reason that soldered connections could not have been

PROGRAMMING THE EPROMS

85

used as well. The description of the Programmer con-
struction assumes that the wire-wrap approach will
be used.

Using a small drill, drill holes for the eleven Ap-

pRESS switches, eight pATA switches, oN/OFF switch,
VERIFY/ PROGRAM switch, and PULSE switch, as shown
in Fig. 8-5. Mount the switches as shown in Fig. 8-8.
Mount the LED indicator lights as shown in Fig. 8-7.

SPDT MINIATURE SWITCH—NO

SPDT MOMENTARY SWITCH ~ 3-POLE SLIDE SWITCH

CENTER POSITION

OO0OO0O0 00 O0O0

SPDT MINIATURE SWITCHES—CENTER
OFF POSITION

SPDT MINIATURE SWITCHES—NO
CENTER POSITION

TYPICAL
MOUNTING

SWITCH

NUT

PERFBOARD NuT

Fig. 8-6. Switch mounting.

o
ASSEMBLY
PLASTIC

/ COLLAR

STEP 1

V0 7 e 7o 777 2
]

PLASTIC
COLLAR

PERFBOARD

LA

A0 47 111103

STEP 3

MOUNTED LED

STEP 4

Fig. 8-7. LED mounting.

86

EZ-80 CONSTRUCTION

NOTE:

MOUNT SOCKETS BY WIRE-
WRAPPING OPPOSING PINS
ON REVERSE SIDE OF
PERFBOARD

WRAP HERE

24-PIN SOCKET OR
"ZERO INSERTION
FORCE”

Lol | [R5

e [

5 06

S

OO0OO0OO0O O0OO0O0

G660 66 H D
6060 060D

° [MJ] o

S

Fig. 8-8. Socket mounting.

Mount the seven IC sockets as shown in Fig. 8-8.
A “zero-insertion force” socket may be used for the
EPROM socket, but it is difficult to obtain a wire-
wrap version of this socket. (The zero-insertion force
socket allows the EPROM to be easily inserted into

CHECK "NORMALLY CLOSED,”

"NORMALLY OPEN"

CHECK PINS ON THIS SWITCH
(TYPICAL CONFIGURATION SHOWN)

the socket and is used when a part must be contin-
uously plugged in and unplugged.)

Make the power connections shown in Fig. 8-9. The
power connections to the switches are made by run-
ning a heavy wire along each side of the switch con-

k No \
1 !
"SHORT” LEAD (1
\(b ¢ GROUN
- Voo BUS
"LONG” LEAD - ('i_ND BUS (SWITCHED)
1 T 1
2 L e Ly = Ll gl
Voo BUS (SWITCHED) GND BUS
T T ! T ! T
- == e o e o = P = P - e =
T T T T T
- T 1 1 1 1 T /
Veo BUS
3-uF.10-V ELECTROLYTIC

g

0.1-pF DISC CAPACITORS

Fig. 8-9. Programmer power connections.

GND
TYPICAL POWER PLUG WIRING

PROGRAMMING THE EPROMS

Chart 8-1. Programmer Wire-Wrap List

Signal Wrap Pins Signal Wrap Pins
SA10(AR) to post S1A-C to FF-3 A7 to post GG-1 to FF-9
SA9 to post S1-Cto FF-2 A6 to post GG-2 to FF-10
SA8 to post S2-C to FF-1 A5 to post GG-3 to FF-11
SA7 to post S3-C to FF-9 A4 to post GG-4 to FF-12
SAB to post S4-C to FF-10 A3 to post GG-5 to FF-13
SA5 to post S$5-C to FF-11 A2 to post GG-6 to FF-14
SA4 to post 86-C to FF-12 A1 to post GG-7 to FF-15
SA3 to post S7-Cto FF-13 A0 to post GG-8 to FF-16
SA2 to post S8-C to FF-14 CE to one-shot GG-18 to AA-13
SAT to post $S9-C to FF-15 OE to PROG/VERIFY switch GG-20to S19C-C
SAO to post S$10-C to FF-16 Inverter input to O0 BB-9 to EE-8
S00 to post S18-C to EE-8 Inverter input to O1 BB-11 to EE-9
S01 to post S$17-C to EE-9 Inverter input to 02 BB-13to EE-7
S02 to post $16-C to EE-7 inverter input to O3 BB-5 to EE-10
S03 to post 815-C to EE-10 inverter input to O4 BB-3 to EE-6
S04 to post S14-C to EE-6 Inverter input to O5 BB-1 to EE-11
S05 to post S$13-C to EE-11 Inverter input to 06 DD-13 to EE-5
S06 to post S12-Cto EE-5 Inverter input to O7 DD-5 to EE-12
S07 to post S$11-C to EE-12 Inverter output to R9 BB-8 to CC-8
00 LED LEDOQ-C to CC-9 Inverter output to R8 BB-10to CC-7
01 LED LED1-C to CC-10 Inverter output to R7 BB-12 to CC-6
02 LED LED2-C to CC-11 Inverter output to R6 BB-6 to CC-5
03 LED LED3-C to CC-12 Inverter output to R5 BB-4 to CC-4
04 LED LED4-C to CC-13 Inverter output to R4 BB-2 to CC-3
05 LED LED5-C to CC-14 Inverter output to R3 DD-12to CC-2
06 LED LED6-C to CC-15 Inverter output to R2 DD-6 to CC-1
07 LED LED7-C to CC-16 Inverter input to PULSE NC DD-1 to S20-1
o7 GG-17 to DD-5 Inverter input to PULSE NO DD-3 to S20-2
06 GG-16 to DD-13 Inverter output to input DD-4 to DD-1
05 GG-15 to BB-1 inverter output to input DD-2 to DD-3
04 GG-14to BB-3 Inverter output to one-shot trigger DD-2 to AA-1
o3 GG-13 to BB-5 Voo AA-2 to AA-16
02 : GG-11 to BB-13 Voo AA-2to AA-3
o1 GG-10 to BB-11 One-shot R/C to DIP socket AA-15 to EE-16
00 GG-9 to BB-9 One-shot C to DIP socket AA-14 to EE-1
A10 to post GG-19to FF-3 Common C1, R1-2 EE-16 to EE-2
A9 to post GG-22 to FF-2 R1-110 Vge EE-15to DD-14
A8 to post GG-23 to FF-1
$20 $19C-C
12 g = L 1 12
I / reTTTTTTT
______ ! 66 i
i |
bommc—mm————— 4
¢ ¢ ¢ ¢ ¢ ¢ ¢ 1'__2;‘___18 "_____13__”
GbHOO Ob OO dmBim
LED0 LEDI LED2 LED3 LEDA LED5 LED6 LED7 jr==-== “g 1Fr——="" -7
M DD
160 S0 a8
i et 1
HEHE BEEHE
1= 18
6t _FF__le
NOTE: NOTE:
SOLDER END OF WIRE-WRAP $5-C" REFERS TO CENTER

WIRE TO SWITCHES AND LEDS CONTACT ON SWITCH

88

EZ-80 CONSTRUCTION

tacts. The power connections to the semiconductor
chips may be made by connections to the V¢¢ or
ground “bus.” Also install three 0.1-uF disc capacitors
and one 3-uF, 10-V electrolytic capacitor as shown.

Wire-wrap the logic connections by following the
wire-wrap table of Chart 8-1. Some of the wire-wrap
connections are soldered on one end. The wires run-
ning to the switches may be tied together in a cable
using cable ties, tape, or thread.

The power required for the Programmer is +5 volts
dc and +25 volts dc. A good source for this is a set
of four 6-volt lantern batteries. They last for many
programmings and supply very close to 425 volts.
Another alternative is a +25-volt supply if the reader
has access to one, or is able to build one. We'll dis-
cuss the battery approach. A simple regulator circuit
that supplies both +25 volts and +5 volts is shown
in Fig. 8-10. The board hoiding the parts can be
taped to the batteries, or the entire assembly may be
contained within the programmer box.

PROGRAMMER CHECKOUT

Verify that the power supply circuit is working by
connecting the power supply leads to the Programmer

FOUR 6-V LANTERN BATTERIES

without the semiconductor chips in their sockets. Turn
the power switch on and cautiously test the tempera-
ture of the regulator IC. It should be warm, but not
hot. Put the PROGRAM/VERIFY switch in the PROGRAM
position and all data switches in the up position. All
LEDs should light. Now, put all paTa switches in the
center (no connection) position. The LEDs should
still be on. Now, put all pATA switches in the off
(down) position. All LEDs should go off. Put the
PROGRAM/VERIFY switch in the vERIFY position. All
LEDs should light. If these actions do not occur,
check the power and wire-wrap connections for the
switches and 7404 chips.

Now, all semiconductor chips except for the 2758
or 2716 can be inserted in their sockets. Turn off the
power and insert the chips, as shown in Fig. 8-11.
The chip holding the two components is constructed
by soldering the resistor and capacitor to a small DIP
“header.”

Turn on the power and cautiously test the tempera-
ture of the chips. None of them should be hot. Insert
an LED/resistor combination into pins 18 and 12
(ground) of the 2758/2716 socket (see Fig. 7-24 in
Chapter 7). Set the vERIFY/PROGRAM switch to PRoO-
GraM. Momentarily switch the puLse switch. The LED

/
o— /——o— /’-'O'— | —
+9] +0f vof L+
t
L, Ve
| (+25V)
METAL HEAT SINK !
L l
1
i
@ LM340°5 :
REGULATOR
fo) | (TOP VIEW) ! Fig. 8-10. Regulator circuit.
ON/OFF LM P :
\ SWITCH 3405]
:
- .- |
]
IN 3 ouT. ' Vee
GND i (+5V)
)
T l
+ 10-uF 10-Vde ;
+ I
]
I
/ |
L GND
ELECTROLYTIC .' _____
CAPACITOR RELETO

PROGRAMMER

PROGRAMMING THE EPROMS

89

275812716
EPROM

1

1
N

| 1
Fig. 8-11. Semiconductor 16-PIN
1404
chip placement. DIP HEADER 2 I 0 ‘1 l 741231
+
15 16
1.5-M2 0.1-uF, 10V NO IC
1/8-W RESISTOR CAPACITOR

should briefly flash. If this does not occur, check the
74123 wiring,.

Using the LED/resistor combination (or a vom or
oscilloscope), check between the pins of the 2758, as
shown in Table 8-1. If incorrect results occur, check
the 2758/2716 wiring.

Put the vERIFY/PROGRAM switch to vERIFY. Set all
DATA switches to the center position. Plug in a 2758
or 2716 EPROM. Make certain that pin 1 is oriented
toward the proper end. Turn on the power. Set the
ADDRESS switches to various settings. All settings
should produce all ones (all LEDs lighted) on the
LED:s.

The next step is to check the programming opera-
tion of the unit. For this step it is obviously necessary
to actually program an EPROM. Probably the wisest
approach is to plan on using one EPROM as a test
device before attempting a large-scale programming
operation. To verify that the programming operation
is functioning, perform the following steps.

1. Turn power on.
2. Set VERIFY/PROGRAM tO PROGRAM.

Table 8-1. Programmer Power Connections

2758/2716 Pin Switch Settings Result
12 Don't care Ground
21 Don't care 425 Vde
24 Don't care -5 Vde
1,2,3,4,5,6,7, All address switches up 4-5 Vdc
8,19, 22,23
1,2,3,4,56,7, All address switches Ground
8,19, 22, 23 down
9,10, 11, 13, 14, All data switches up and +5 Vdc
15, 16, 17 PROG/VRFY set to

PROG

9,10, 11,13, 14, All data switches down Ground

15, 16, 17 and PROG/VRFY set to
PROG

3. Set the appress switches to the values given in
Table 8-2 and the pata switches to the values
in the same table. After every new set of values,
pulse the switch one time.

4. Set all paTa switches to the center position.

. Set VERIFY/PROGRAM t0 VERIFY.

6. Set the address switches to the values given in
Table 8-2. Read the data output on the LED:s.
It should correspond to the values previously
programmed.

w

If the above operations have been performed cor-
rectly, the EZ-80 Programmer is assumed to be oper-
ating in both the programming and verify modes. If
the programming did not take place properly, check
the component values of C1 and Rl and the wire-wrap
connections. It may also help to enlist the aid of a
friend with an oscilloscope to check the duration of
the CE pulse. It should be 50 milliseconds +5 milli-
seconds.

OPERATING THE PROGRAMMER

Operation of the Programmer is identical with the
VERIFY/PROGRAM operation described above. To read
any location:

1. Set all paTA switches to the center position.

Table 8-2. Test Program Values

Address Data
00000000000 00000000
00000000001 11111111
00000000010 10101010
00000000011 01010101
01000000000 00110011
01111111111 01110111

(2718 only)
10000000000 00110011
1111111111 01110111

90

EZ-80 CONSTRUCTION

2. Set the VERIFY/PROGRAM switch to VERIFY.

3. Change the address switches to the proper ad-
dress and read the data values on the LED:s.

4. Repeat Step 3 for all locations to be read.

To write to any location:

1. Set the VERIFY/PROGRAM switch to PRCGRAM.

2. Set the data switches to the desired value. Verify

that the correct value is repeated in the LEDs.

Set the Appress switches to the proper address.

Pulse the puLsE switch once.

. Repeat Steps 2 through 4 for all locations to be
programmed.

©

SN

One important word of advice—if the wrong value
is programmed into the 2758 or 2716, it is generally
not recoverable. The EPROMs come with all ones
programmed into every location. If a zero has been
written into a bit of a location that should have been
a one, then the only way to redo that location is to
erase the EPROM and start all over. If a one has been
erroneously programmed, then it is possible to redo
the operation by repeating the programming with a
zero, for the “one” programming was a “no action”
operation.

The implications of this are somewhat staggering.
Don’t program the EPROMs late at night! You're
bound to put a zero bit into a location where a one
should have gone. This always occurs about three
quarters of the way through a programming opera-
tion.

The time required to program 500 locations is about
two hours. Although this seems a bit much, it is very
comparable to the time spent in traveling to another

location to use a friend’s equipment or in waiting for
a distributor’s operation.

ERASING THE EPROMS

The 2758 and 2716 can be erased (all locations
changed to ones) by exposing the chip to strong
ultraviolet light. EPROM erasers can be purchased
from computer stores at reasonable cost (see Fig.
8-12). Another source is a medicinal type of ultra-
violet lamp.

WARNING!

ULTRAVIOLET LIGHT CAN CAUSE PERMANENT
EYE DAMAGE IF A USER LOOKS INTO THE LIGHT
FOR EXTENDED PERIODS! BE CAREFUL.

The preceding warning is cautionary only. One
should never look directly into a strong ultraviolet
light source, as it may cause an optical “sunburn.”
Just handle the light prudently.

Erasure times vary with the light output of the
ultraviolet eraser and distance to the chip type, but
a period of several hours is typical. Verify several
locations before reprogramming to make certain that
all data values read are ones. When erasing, place
the chip(s) as close to the light source as possible
with the translucent window uncovered.

The window does not have to be covered after
programming, as even strong sunlight will take sev-
eral weeks to erase the EPROM. Covering the window
with masking tape or a label is probably not a bad
idea, however, if the EPROM has been permanently
programmed with an applications program.

In the next chapter, we'll discuss the EZ-80 Diag-
nostic Program, which is an excellent choice for your
first programming project.

Fig. 8-12. EPROM eraser.

CHAPTER 9

A Diagnostic Program for the EZ-80

This chapter describes a diagnostic program for the
EZ-80. The Diagnostic can be programmed into the
EPROM and used to help exercise and diagnose prob-
lems with the EZ-80. The Diagnostic is not a prereq-
uisite for operation of EZ-80 applications programs,
but the reader is prodded (if not urged) to test the
EZ-80 with the EZ-80 Diagnostic before implement-
ing the applications programs. The EZ-80 Diagnostic
is also useful if failures occur after the EZ-80 has
been “brought up” and is successfully operating. Al-
though the chances are good that a failure in the
latter case will be a bad semiconductor chip that can
be verified by replacement, the EZ-80 Diagnostic
serves as a good confidence check for the “hardware”
and may help in defining hardware problems.

Probably the most useful application of the EZ-80
Diagnostic is to verify that the hardware is indeed
operative when a new applications program has been
programmed into the EPROM. Most errors that occur
in working computer systems are human errors, and
the EZ-80 is no exception to this rule. If the EZ-80
Diagnostic runs successfully, then the probability is
very good that the problem is in the erroneous pro-
gramming of the EPROM, in the case of the applica-
tions programs that are “precanned” in this book, or
in the erronenous design or programming of other pro-
grams that the reader has constructed.

EZ-80 DIAGNOSTIC PROGRAMMING

Fig. 9-1 shows the complete listing of the EZ-80
Diagnostic. Program a 2758 or 2716 EPROM by using
the EPROM Programmer described in Chapter 8§,
or by any of the other methods described. The EZ-80
Diagnostic occupies EPROM memory locations 0000
through 16DH, as shown in the listing. Let’s review
the listing format so that the reader is certain of the

“data values to be used. The first column on the listing
contains the memory locations in hexadecimal. The
next column contains the contents of the memory

91

locations in hexadecimal. The second column con-
tains two, four, eight, or sixteen hexadecimal digits
representing one, two, three, or four bytes in EPROM
memory. The first column contains the starting mem-
ory address of the one, two, three, or four bytes
represented.

Location 25H, for example, holds a DAH. Locations
26 and 27 contain 24H and O00H respectively. The next
location is location 28H, as shown in column 1. Occa-
sionally, there will be “gaps” in the locations in the
EZ-80 Diagnostic and other programs described in
this book. An example of this is at locations 63H and
64H, which hold 18H and 04H, respectively. The next
location in column one is location 66H. Where did
location 65H go? This location is a “don’t care” and
does not have to be programmed. The effect of this
is that it will contain all ones, the initial state of the
EPROM.

The next column is the “line number” reference,
and is meaningless as far as EPROM programming
and program execution. The next four columns rep-
resent the source line assembly-language code— label
(optional), op-code mnemonic (mandatory), oper-
ands (variable), and comments (optional). The con-
tents of the memory locations in the second column
represent the machine-language instructions for the
associated source line.

For convenience in programming the EPROM, the
contents of every location and the memory location
itself are listed in Fig. 9-2. The contents are given in
both hexadecimal and binary, as is the memory loca-
tion value. :

To program the EPROM using the EPROM Pro-
gramer described in Chapter 8, follow the step-by-
step operating instructions of the chapter. Be cer-
tain that all locations are correctly programmed by
verifying the contents of the locations twice. (It may
help to have someone else read off the contents as
you check the list of data in the table. Once the
EPROM has been correctly programmed and verified,

£Z-80 CONSTRUCTION

ralrlule}

ralrdrled
203
rafrafe]
ooa7
aeoe
ROGA

apac
ralnln]=y
a1
a1 4
2B15
oais

PR1A
eeic
QR1E
ozl
2Q:z4
Bozs
oe:8
a0zA
ralr e
BazD
QRzF
Bo30
P33
Ba35

b@37
Bu3e

fn@a3c
0B3E
ralra B
2041
BR44
w47

318006
3E89
D303
AF
D300
D301

Pea7
11FFFF
Z1FFFF
19
DA1400
10F7

3ELD
D3GE
Z1FFFF
Q1FFFF
@9
DAZ40@
cemt
47
E4OF
FEDA
78
C21CO0
E&FO
cez7
FEDO
C21C00

3E11
D300
AF
3:20:08
3ARZ@8
FEDD

Po10a
nO1L10
ne1:0
@o1z5
heize
BO130
BR140
Qa150
peisa
P17
@180
Ae19a
0o:00
oaz1e
ralr pegedny
PRz30
BO:z40
bez5@
hezsl
vaz7e
jrulrbeg =1
[ralrdeird s
e300
o310
er3z0o
BO330
20340
or350
BR360
pa37e
20380
ar39a2
20400
Q@41@
00420
on430a
00440
22450
D046
Q@47
00480
2B490
20500
00510
G5z
aes532
BR54@
2055e
RR560
oe570
22580
22590
oRr620
PO&10

TEKEENEREREREEERERE R RN RREREHE IR R KRR R HRE RN K
T *
5% I-8@ MDP DIAGNOSTIC *
¥ R-00 *
HE S 3/29/78 *
s *
T T I sy s]
ORG @
5 INITIALIZE STACK AND PPI
START LD SP, 8R0H sTOP OF RAM+1
L.D ArBIH SMODE CONTROL WD
ouT (3)9A $SET MODE ©@.SUBMODE 3
XOR A s CLEAR A
OuT (A)s A tRESET LEDS
OuUT (1)sA SRESET QUTPUT LINES
sLOOP HERE 1@ SECONDS FOR SCOPING
SCOPE LD Es7 sQUTER LOOP COUNT
I.D DEs -1 sDECREMENT =-1
SCF1@ LD HL s -1 INNER LOOP COUNT
SCPz2 ADD HL s+ DE sDECREMENT HL
JF CsSCPZA sLOOP IF NOT DONE
DJINZ SCP1@ SOUTER LOOP
SSEQUENCE LED DIGITS RIGHT TO LEFT
LEDDGT LD A 10H- 5@ TO RIGHTMOST DIGIT
LEDB@S ouUT (@)s A sOUTPUT CURRENT VALUE
L.D HLs—1 sFOR DELAY COUNT
LD BCy—1 sFOR DELAY DECMNT
LED1ID ADD HLsBC $DECRE COUNT
JP CsLED1Q sLOOP IF NOT 64K
ADD Asl sBUMF DIGIT VALUE
LD BsA $ SAVE
AND OFH sGET DIGIT VALUE
CP @AH sOUTPUT ©-97
L.D AsE sRESTORE
JP NZ» LED@S 560 IF MORE
AND RQFH 3GET POSITION FIELD
SL.A A SMOVE TO NEXT POSITION
CP @ $AT LEFTMOST?
JP NZ» LEDBS 560 IF NO
$TEST 1:TEST RAM ADDRESSES AND DATA
RAMTST LD As11iH sFOR TEST 1
ouT (@)sA sOUTPUT TO LEDS
XOR A 0 TO A
I.D (BBZH) s A 5STORE @ IN FIRST RAM
LD Ay (BBZH) SGET CONTENTS
cpP] $ZERO?

Fig. 9-1. EZ-80

A DIAGNOSTIC PROGRAM FOR THE Ez-80

93

P49
204cC
224D
2050
0e53
PB54
57
A05A
2e5D
PBSE

RBs1
DBs3

DR&s
866
069
2069
Qs
N06E
oo7.
2071
o7z
073
ha7s
oa78
po79
Pa7A
Qo7e
Ba7C
PO7F
oese
alrit= g
2@85
2088
2289

b@8cC
P@8E
0070
o293
Pe%s
0297
o999
009C
RO9F
oAz
P0AS

C24500
oF

320208
340208
3c

CZ5400
Z1FFFF
DIFFFF
09

DASDO®

3E1Z
1804

C36101

D300
210208
0&7¢C
AF

77

7E
FEOD
C27500
2F

77

7E

3c
CZ7C00
23
1OEF
Z1FFFF
OLIFFFF
@9
DAB300

3E13
D300
213075
CD5301
AF
D306
z211ez7
CD5301
2138FC
220008
3E13

PR6H20
00630
Q04640
avBs50
rln YY)
0B670
20680
o690
2700
o710
P27:0
22736
BB740
20750
20770
22780
22790
lnt=inln]
2810
rlnts el
Roe3e
20835
20840
noBss5d
alrkadot)
AeB70
hasee
2890
22700
0710
20722
p23732
BBT40
we950
aes55
ABI50
Pa97e
22980
a299@
Ni0o6
P1010
@n10z0
a1e230
01040
21058
01060
21070
210280
21090
21100
1110
P1120
?1130
21140

RAM10 JP NZ+sRAM1G
CPL
LD (8BZH)» A
LD As (BOZH)
INC A
RAM:Z JP NZ s RAMZO
LD HLs—-1
LD BCs—1
RAM30 ADD HLsBC
JP C» RAM30
sTEST Z:SHORT RAM MEMORY
MEMTST LD As 12H
JR 6HFH
sNM INTERRUPT VECTOR
ORG 66H
JP NMIHAN
ORG 69H
ouT (@)r+A
L.D HL» 8@2H
D Ry 124
XOR A
MEM10 LD (HLY 9 A
LD As (HL)
CP @
MEMZ0 JP NZ.MEMZQ
CPL
LD (HL)s A
LD . As (HL)
INC A
MEM30 JP NZ s MEM30
INC HL
DJINZ MEM1®
LD HL» =1
L.D BCy—1
MEM40 ADD HLsBC
JP Ly MEM4O
STEST3:NMI/CLK FREGUENCY
MMICLK LD Asx 13H
OuUT (@)sA
LD HL» 30000
CAatL DELAY
XOR A
OuUT (@A
L.D HL» 10000
CALL DELAY -
LD HL + BF C38H
LD (TIME) s HL
LD As 13H

TEST

TEST

sLOOP HERE ON ERROR

-1 TO A

$STORE -1

5GET CONTENTS

sTEST FOR ALL ONES

sLOOP HERE ON ERROR

5FOR DELAY CNT

sFOR DELAY DECREMENT
sDECREMENT COUNT
SLOOP IF NOT 64K

SFOR TEST =

5SEYPASS NMI VECTOR

5G0 TO PROCESS MNMI

SOUTPUT TO LEDS
$START OF RAM

3SIZE OF RAM ~WORKING
@ TO A
SSTORE ALL ZEROES
FGET STORED VALUE
5IS IT ZERO?
;LOOP HERE ON ERROR
-1 TG A
sSTORE ALL ONES

SGET STORED VALUE
IS IT -1t
SLOOP HERE ON ERROR
SEUMP POINTER
sCONTINUE HERE FOR
$FOR DELAY CNT
5FOR DELAY INC
SDECREMENT COUNT
FLOOP HERE IF NOT éH4K

1248

sFOR TEST 3
JOUTPUT TO LEDS
330 SEC DELAY AT 1 MHZ

i@ TO A
sCLEAR LEDS
1@ SEC DELAY

SFINAGLE FACTOR FOR 1@
SINITIALIZE RTC CONT
iSECOND PART OF TEST 3

Diagnostic program.

EZ-80 CONSTRUCTION

QA7
A0A9
A0AC
A@AD
ARAE
2ee1
aeez
20B4
ooe7

DBRA
oeec
OURE
BoCo
pCz
ABdC4
@ac7
aacs
17 1o <)
pacc
A0CE
2@D1
@aD4
ABD5

aepz
oD%
@@eDe
0ODE
PREL
ABE4
QRE7
DOEY
QRER
QED
QREE
QoF1
@POF3
QOF 4
BRF6

D300
ZAD008
7D

B4
C2A900
AF
D300
211027
CDS301

B61E
3E14
D3@®o
3EFF
D301
21F401
c5
€D5301
AF
D301
Z21F401
CD53@1
C1
10E9

3E15
D300
211827
CD5301
2148F4
220008
ps08
RE®@S
De@z
AD

CAF 400
JEL1Q
81
D300
21CB0O0

BOF9? C5

DOFA
POFD
QOFE
QOFF

0181
8104

2187
2108

CD5301
C1

@D
CB:@
CZERQ0
3A0108
B7
FAE700

21150
21160
21170
21180
01190
2100
1218
n12:0
012302
21240
21250
21260
21:270
01:80
21290
21300
81310
n13:0
1325
@1330
21340
P1350
®1355
B1356
Q21357
@1360
01370
01380
21390
1400
01410
Q1420
21430
21440
1450
21460
1470
P1480
21490
21500
a2151@
@215:0
21530
1540

A1545
B1550

@1555
B1560
@157@

21580
01598
D1600
01610
21620

NMI10

TEST 4:

s we ue

OUTLN

oUT18

TEST 5:

[FTRE TR

INLINE

INLOZ

INL@S

INL1D

e

ouT (0)sA

LD "HLs (TIME)
LD AsL

OR H

JP NZsNMI1O
XOR A

ouUT (D)9 A

LD HL s 10000
CALL. DELAY
OUTPUT LINES TEST
LD B, 30

LD Al 14H
QUT (Q)sA

LD AsDFFH
OuUT (1)s+A

LD Hi_ s 500
PUSH BC

CALL DELAY
XOR A

ouT (1)9A

LD HL » 500
CALL DELAY
POP BC

DJINZ ouT10

INPUT LINES TEST

LD As 15H

ouUT (@)sA

LD HL.» 10000
CALL DEL.AY

LD HL s @QF 448H
LD (TIME) s HL.
LD BE.@8H

LD Cs5

IN Ax (BEH)
AND B

JP Z,INL1O
LD A1 10H

ADD Al C

OUT (@) A

LD HL .« 200
PUSH BC

CALL DELAY

POP BC

DEC c

SLA B

JP NZ» INLO@S
LD Ay (TIME+1)
OR A

JP Ms INLOZ

sOUTPUT TO LEDS
$GET CURRENT RTC COUNT
$LOW ORDER BYTE
SMERGE HIGH-(ORDER BYTE
$G0O IF NOT TO ZERO

50 TO A

sCLEAR LEDS

$1@ SEC DELAY

3@ SECS FOR TEST

sFOR TEST 4

sOUTPUT TO LEDS
sALL. ON
sOUTPUT TO LINES
51/2 SEC DELAY
sSAVE RC

30 TO A
SALL OFF
s1/2 SEC DELAY

$RESTORE BC
5GO IF NOT 3@ S5ECS

sFOR TEST 5
SOUTPUT TO LEDS
sFOR 1@ SEC DELAY

sFINAGLE FACTOR FOR 30 S
SINITIALIZE RTC COUNT
: INS MAGK
5IN DIGIT #
5 INPUT LINES
SGET LINE®@
GO IF @
sFOR RIGHTMOST LED
SMERGE LINE #
SOUTPUT @ OR #
31/5 SEC DELAY
s5AVE BC

SRESTORE BC
sDECREMENT DIGIT #
SALIGN MASK
$GO IF NOT LAST
3RTC SIGN
$sTEST SIGN :
$G0O FOR ANOTHER PASS

Fig. 9-1 cont'd. EZ-80

A DIAGNOSTIC PROGRAM FOR THE EZ-80

95

@10k
210D
B1@F
112
n115
0118
P11B
@11D
211F
2120
@p1zz
D1z4
A1zb
0129
@A1zR
@12Db
@132
8131
@134
@135
B137
D139
13C
@13F
2140
0141
2143
@144
Q146
0149
p14cC
@14D

2150

2153
@156
2158
@159
Q15A
215C
Q15E

8161
D16z
@163

3E16
D300
211027
CD5301

2148F 4

20008
0618
PED4
78
DEDZ
E6D7
EEQ7
CA4RD1
€610
D300
21800
5
CD5301
79
c610
D300
21C800
CD5301
c1

AF
D300
oD
CRZD
CZ1F@Y
340108
B7
FA1EB1

C300on

11FFFF
B64A
19

DO
10FE

FDzB
C35601

@8

2ADRO8

@1630
B1640
Q1650
1660
1670
2168@
816902
1700
R171@
Q1720
01730
@1740
@175@
@1755
21760
®1770
B1780@
@179@
@179%
21800
Q1816
21820
21830
21840
21850
@31855
218602
01870
oise@
01890
21900
01910
Ri19z0
B1730
1940
21950
01960
1970
21980
21990
0:000
2:z010
2:0:0
B:z030
0:040
2z050
02060
2070
22080
22090
B:z100
02110
02120

2130

STEST &:KEYBOARD SCAN TEST
KBESCAN LD As 16H

QUT (@)s A

L.D HL 1000@

CALL DELAY

LD HL s @F 448H

LD (TIME) s HL.
KESBS LD B.10H

LD Ci 4
KBS1@ LD Al B

IN Ay ()

AND 7

XOR 7

JP 2+ RKBES2@

ADD Ay 10H

ouT (Ara.h

.0 HL s 200

PUSH BC

Call DEL.AY

LD A

ADD A 10H

COUT (D)2 h

LD HL.+ 200

Call. DELAY

POP BC
KBESZ@ XOR A

QuUT (B)e A

DEC C

SLA B

JP NZ+KBS1@

LD Ay (TIME+1)

OR A

JP My KBS@5
SRETURN TO PEGINNING OF PROGRAM.

JF START
sDELAY SUBROUTINE.DELAYS 1 M5 *
DELAY LD DEs—1
DEL@S LD B @4AH

ADD HL s DE

RET NC
DEL.1@ DJNZ DEL.1@

DEC 1y

JP DEL @5
$NMI INTERRUPT HANDLER
NMIHAN EX AF s AF?

EXX

LD HL. { TIME)

sFOR TEST &
sOUTPUT TO LEDS
sFOR 18 SEC DELAY

sFINAGLE FACTOR FOR 30 S
SINITIALIZE RTC COUNT
;ROW # MASK
3ROW # COUNT
SROW # MASK
$READ INPUT LINES
sPROCESS ONLY KRB
SACTIVE LOW LINES
560 IF NO DEPRESS
sFOR RIGHT LED
sOUTPUT TO LEDS
51/5 SEC DELAY
sSAVE BC

SGET ROW #

sFOR RIGHT LED
SOUTPUT TO LEDS
31/5 SEC DELAY

$RESTORE BC

1@ 7O A

sCLEAR LEDS

sDECREMENT ROW CNT

SGET NEXT ROW #

5GO IF NOT LAST ROW
5GET 5IGN OF RTC CNT
sTEST SIGN
G0 IF NOT PAST @

COUNT IN HL

$DECREMENT VALUE
sFINAGLE FACTOR
sDECREMENT HL COUNT
SRETURN IF DONE
$ INNER DELAY
sWASTE TIME

$RETURN TGO OUTER LOQOP

$SAVE FLAGS:A
$SAVE OTHER REGS
5GET TIME CNT

Diagnostic program.

¥Z-80 CONSTRUCTION

D166

0167
D16A

P16E
216C

2802
2800
2022
ralralnlntt

DEL@S
DEL1@
DELAY

INLOZ
INL@5
INL1O
INLIN
KERS@5
KES10
KBS0
RBSCA
LED®@5
LED1@
LEDDG
MEM10O
MEMZ@
MEM3@
MEM40
MEMTS
NMI1O
NMICL
NMIHA
ouT1O
OUTLN
RAM1O
RAMZ@
RAM32
RAMTS
SCOPE
SCP10
SCP2

START
TIME

23
220008
D%

28
ED45

ralralral”

TOTAL

@156
@15A
B153

@BE7
@RER
ABF 4
E @@D7
@11B
@11F
0140
N @10FB
Pz1C
oaz4
T 201A
oe71
avs
ar7C
oe88
T B@61
oA
K 008C
N @161
once
aoeA
R049
oes54
@e5D
T @083C
poocC
o011
214
oooe
2800

2140
Bz150
82160
Rz17@
0z180
0z19@
2::00

2210
@220

ERRORS

0z0z0
02850
0z@10

01460
21480
@1530
21400
21710
@1730
B1860
B1650
o380
bR410@
20370
2870
22700
2Re50
00992
@750
01160
21240
02110
21300
01270
radriloyedr]
oBe7@
2270
20560
20:80
22300
eB310
22120
Bzz10

"
3

TIME

Bza7a
P:050
eiad7e
81680
01610
21580
21500

01930
21700
@B1760

20480
P42

940
20700
@50
21200

21190

(rfrl=pedr
21360

BR62G
oes670
2710

20330
20320
1970
21130

22150

INC

LD
EXX

EX
RETN

ORG
DEFW
END

01110 @1230 P1330 01356 21430 @155

HL
(TIME) s HL

AF s AF?

BGOH
@

N18060 @130

RS-0

@1160 01450 21590 01720 01910 2130

$BUMP BY ONE

$STORE

$RESTORE REGS
$RESTORE FLAGS»A
$RETURN FROM NMI INTR

sFIRST RAM LOCATION
$RTC COUNT

Fig. 9-1 cont'd. EZ-80 Diagnostic program.

A DIAGNOSTIC PROGRAM FOR THE EZ-80

97

200
2a1
2az
@a3
Ro4
205

206
a7

208
009
2aA
aee
@ac
@oD
QoE
BoF
210
211
@1z
@213
D14
@15
216
f17
218
219
Q1A

21C

LOCATION

oee
200
0eo
Voo
200
%]
200
200
200
200
0oe
200
Roe
7]
LVl
000
000
000
boa
200
206
200
200
voo
lrfn}
200
]}
200
Voo
000
oo
ooe
220
220
220
200
200
rallrs
200
220
ooo
000
oo
200
200
000
000
ral 1%
ooo
220
oo
vee
200

2000
2000
20r0
0000
rainlrilnj
oeee
2000
alnlrln)
2000
oo
Qoo
0200
0000
2000
Ll l}
P00
2001
eeea1
201
0201
Bo@a1
2001
2001
2201
2001
boo1
0001
2201
2001
oea1
2001
020o1
22102
2010
2010
vei1e
0010
k210
0010
02102
2210
o110
2010
2010
0010
2010
2010
2010
011
2211
2011
2011
2a11

booo
2001
2210
211
0100
2101
2110
2111
1200
1001
1010
1011
1100
1101
1110
1111
ralalVar]
2201
2010
2211
2120
D121
2110
2111
1200
1201
1210
1011
1100
1101
1110
1111
2000
2201
0210
2011
2100
2101
2110
B111
1000
1001
1010
1011
1100
1101
1110
1111
2000
2001
2210
0211
2100

CONTENTS

2011
1200
2020
P211
1000
1101
2000
1210
1181
200
1101
2006
rajrall}
2000
oral
1111
1111
2212
1111
1111
2021
1191
ralrulveg
2000
22a1
1111
2211
P2o1
1181
2000
2210
1111
1111
2000
1111
1111
noce
1181
2010
0200
1120
radralralv
2100
1110
2200
1111
ragralralr
P11l
1100
2021
rafralralr]
1112
1111

2201
rlralradr)
10002
1110
1201
0211
o111
111t
2611
200
211
ooa1
2110
111
20201
1111
1111
2201
1111
11114
1201
1010
2106
2002
ugrilealr)
2111
1112
2000
Qe11
2oe
2001
1111
1111
P21
1111
1111
1021
1210

2100

2000
2110
2001
@111
2110
1111
1112
1010
1200
010
1100
2000
2110
adradradra}

235
236
037
238
239
23A
23e
@3¢
@3D
03E
o3F
240
041
04z
043
D44
045
R4b
047
048
049
D4A
04B
04C
24D
D4E
R4F
250
@51
@52
253
054
255
056
@57
258
259
254
258
@5¢
25D
@5E

A5F
860

261
@62
@63
DbH4
@65
Bb66
@67
268

LOCATION

rafri v}
lal]
200
200
220

200
220

200
200
o200
2o
200
(e’
202
200
rafalri]
radralr]
200
200
200
afrlr]
alralr)
200
200
20
ralnlr
200
200
lrr
200
radrilr}
20e
rafr]ri]
200
alra]
200
eJriln)
lrlr
200
200
ralrafr]
200

200
rlnlr}

alnl
7]
rlralr
ralral"]
200
000
220
rlnln]

@211
2011
2211
2211
a1l

o211
Bo11

2311
2011
2211
Bo11
2102
2100
2100
100
0100
2100
2120
2100
@10@
2100
2100
21020
2100
2100
2100
2100
2121
2101
2101
2121
2101
21021
21021
@101
21014
A101
2101
2101
2101
2101
2101

210
211

2110
2110
0110
2110
2110
2110
P110
2110

2101
2110
2111
1000
1001

1010
1211

1100
1181
111@
1111
2000
2ol
PP10
a1l
Ri2o
2121
2110
2111
1006
1201
1201@
1011
1100
1101
1110
1111
2002
2081
eeie
2211
2100
2121
21106
2111
1200
10@1
1210
1011
1100
liel
1110

1111
ralrairlr}

2021
o210
o111
2100
2101
2110
f111
1020

CONTENTS

1100
goi1@
1111
2200
1100
2001
2000
2011
0201
1101
2000
1010
2011
2200
2000
2011
rln Ll
P00
1111
2202
1100
@100
ubnlals
A1
@11
ralrlaln
nooe
Ro11
20002
ralralviles
g1l
1100
n1021
Ll
2e1a
1111
1111
radralaln
1111
1111
Q000
1101

2101
Dod@

2011
o1
Pea1
2200
1111
1100
P110
2200

1011
2111
1110
rajralr.)
2010
1100
2200
1110
Qea1
0011
alralrdr]
1111
o212
o010
1000
1010
anie
1000
1110
2000
i@
1001
(ralralrije]
1111
2210
210
1000
1010
2012
1200
1100
2210
0120
2220
@01
1111
1111
a1
1111
1111
1001
iD1@

11@1
o2ed

1110
2102
1000
2100
1111
2011
2201
D221

Fig. 9-2. EZ-80 Diagnostic contents.

EZ-80 CONSTRUCTION

LOCATION CONTENTS LOCATION CONTENTS
V69 POD 9110 1001 D3 1101 @811 9D 00 1201 1101 53 9101 20811
06A Q00 2110 1010 00 2ODO PODO @FE 002 1201 1110 91 0020 2001
P4E 022 0110 1011 Zl 0010 2001 09F 000 1001 1111 21 Q012 0001
064C 000 0110 1100 0z 0002 P@10 AR 0DD 1210 2RO 38 0211 1000
P6D QU0 V110 1101 03 2022 1000 DAl QDG 1210 2001 FC 1111 1100
DLE QDO 2110 1110 26 0020 P110 PAZ 002 1010 2010 22 0010 0010
V4F 020 P11@ 1111 7C ©111 1100 A3 000 1010 @O11 o2 0000 0000
070 000 2111 000D AF 1018 1111 QA4 000 1010 @100 o8 0022 1000
271 002 D111 DOB1 77 @111 @111 0AS 000 1012 0101 3E 0011 1110
072 008 2111 0210 7E 0111 1110 A6 000 1010 2110 13 2201 2o11
@73 002 2111 2011 FE 1111 1110 BA7 002 1912 2111 D3 1101 2e11
074 0020 2111 0100 o0 000D bLOO PA8 000 1010 1000 o0 0002 DO
275 00O D111 2101 Cz 1100 0010 A 000 1210 1001 2A 2010 1010
76 OO 2111 2110 75 @111 2101 PAA 002 101D 1010 20 Q000 2200
@77 000 2111 9111 20 0020 2000 QAR 000 1212 1811 P8 D020 1000
078 000 0111 1000 ZF 8210 1111 DAC DOD 1010 1100 7D @111 11@1
079 000 ©111 1001 77 @111 @111 PAD @02 1210 1101 B4 1211 D100
@7A Q2 0111 1210 7E @111 1110 OAE 000 1012 1110 Cz 1100 2010
P78 000 B111 1011 3C @011 1100 DAF QDO 1010 111t A9 1010 100t
P7¢C 00O 0111 1100 €z 1100 0010 PERQ Q00 1011 OORO P2 0PE0 BDOD
@7D @00 D111 1101 7C ©111 1100 oB1L 000 1811 2001 AF 1218 1111
O7E 000 @111 1110 20 D000 Q00D PEZ Q02 1211 POIO D3 1181 @811
O7F @08 2111 1111 3 0010 o011 B3 020 1011 2B11 02 0020 DORD
080 000G 1000 PEOD 10 2001 PVDO OR4 Q00 1D11 2100 21 POi0 DOL1
781 000 1000 DOO1 EF 1110 111t OB5 000 1811 @191 12 0901 0002
P8z 000 1000 BG1D 21 2010 PRO1 PBRé DOR 1011 2110 27 001@ @111
283 002 1000 D@11 FF 1111 1111 oBR7 Q0B 1011 @111 CD 1100 1101
084 QD@ 1000 D10O FF 1111 1111 "@B8 0RO 1011 1000 53 0101 0011
085 000 1008 D101 P1 0000 0D0B1 B9 000 1011 1001 21 0Q0E® ODOD1
0846 DOP 1000 D110 FF 1111 1111 PBA PO 1811 1010 D6 200D D110
087 000 1000 D111 FF 1111 1111 PR P0G 1011 1011 1E 2001 1110
088 Q00 1200 1000 29 000D 1001 PRC 000 1011 1100 3E 0811 1110
089 00D 1000 1001 DA 1101 1010 OBD 0PD 1011 1101 14 0001 D100
28A 00O 1000 1010 88 1000 1000 ORE Q02 1211 1110 D3 1121 801t
8B P02 1200 1011 20 0oL G000 PBF 000 1011 111y 00 0020 V000
08C 000 1000 1100 3E 0011 1110 PC2 200 1100 V02O 3E Q011 1110
8D 00D 1000 1101 13 00Dl 001t @C1 002 1100 POO1 FF 1111 1111
P8E Q00 100@ 1110 D3 1101 @011 @OC: 002 1120 2010 D3 1121 0011
28F Q0@ 1002 1111 00 002D 20O OC3 000 1100 PB11 P1 000D ROO1
0590 000 1001 DOOG 21 0010 2001 @C4 000 1100 D100 21 0010 a1
291 000G 1001 0011 30 0011 DDRO C5 V0P 1100 D101 F4 1111 2100
P9z 000 1001 PO1O 75 8111 2101 PCo6 QDO 110D 2110 P1 Q000 VD@1
8953 000 1281 2011 Ch 1100 1101 OC7 000 1100 @111 €5 1100 2101
P94 ODO 1001 2100 53 D101 0011 0C8 P00 1100 1000 CD 1100 1101
095 002 1001 D101 ®1 200D 2081 7C% 002 1100 1001 53 @101 0011
P96 ©OP@ 1001 D110 AF 1010 1111 OCA QDO 1100 1010 21 000D 2001
097 002 1001 D111 D3 1101 2011 PCB Q00 11002 1011 AF 1210 1111}
098 002 1001 1000 o0 0000 PORO 0CC 000 1100 1100 D3 1181 Q011
999 0200 1001 1001 21 02010 2001 OCD 000 1100 1101 ?1 0000 P0O1
99A 002 1001 1010 10 001 VODG OCE 00D 1100 1110 21 0010 00@1
098 0202 1001 101t 27 0010 o111 OCF Q00 1100 1111t F4 1111 2100
99C 000 1001 1100 Ch 1100 1101 oD 20D 1101 DOEO D1 0000 2001

Fig. 9-2. cont'd. EZ-80

A DIAGNOSTIC PROGRAM

FOR THE EZ-80

@D1
@Dz
@D3
@D4
@D5
@Dbé
@D7
op8
@De
@DA
@De
@pc
@apD
ODE
ADF
BEO
GE1
RE2
QE3
DE4
PES
RES
BE7
QEB
QE9
QAEA
QEB
@EC
QED
PEE
QEF
oF@
oF1
DFZ
QF3
OF 4
@F5
@F &6
QF7
oF8
@F9
OFA
oFe
PFC
OFD
oFE
@FF
100
101
102

103
104

LOCATION

boo
200
ooo
1l 7]
Boo
000
200
200
voa
][]
200
rlrlrs
1l
ralralr]
000
220
200
220
2oo
200
vee
200
000
voo
200
200
000
Doo
200
oee
o0a
2oe
voa
200
208
boe
ooe
200
220
220
1%}
200
200
ooe
(%17
Voo
(%7}
a1
0ai
221

201
a1

1101
1101
1101
11014
1121
1101
1101
1101
1101
1101
1101
1101
1101
1101
1101
1110
1110
1110
1118
1110
1110
1110
1110
1110
1110
1110
1110
1110
1110
1110
1110
1111
1111
1111
1111
1111
11114
i1l
1111
1111
1111
1111
1111
1111
1111
1111
1111
alnrlr]
0200
2000

2000
ulnlnin)

2001
210
2011
2100
2101
2110
2111
1000
1001
1010
1811
1100
1101
1110
1111
i 1r. 7
o2o1
Po102
0211
2100
2101
2110
?111
1202
1201
1210
1011
1100
1181
11102
111
ralralvalv
2001
2210
P11
2100
2121
D110
2111
1000
1001
1010
1011
1120
1101
1110
1111
cooo
o221
0210

0011
0100

CONTENTS

1100
2101
20020
1100
2001
1110
2011
Beo1
1101
2220
2310
o021

2210
1100
2101
rafralralri
0210
2100
1111

210
2000
radtallr,
2000
ralralradr]
ralralralv]
2220
1101

radradrilr]
1018
1100
1111

ralralran)
2011

2201

1000
1101

2000
1@
1100
2200
1108
1120
2101

2000
1100
ralrafralr.]
1100
2210
1100
1110
it
2211

1101
2211
2281
2201
2200
1001
111@
2121
o011
000
2001
P000
111
1101

211

2021
2061

1000
2100
2010
ralradridri]
1200
n110
1000
1118
D121

1211

2010
rlrlnln
12010
2120
2000
1110
2000
ABO1

2e11

ralrajralri]
k0021

1200
Po00
2101

1181

2211

2001

2201

1101

1011
2002
22102
1011

2000
1010

185
186
107
128
109
10A
108
10C
10D
10E
10F
110
111
112
113
114
115
116
117
118
119

138

LOCATION

001
201
201
201
201
201
201
201
201
201
201
221
201
7:17: 3§
201
201
201
201
201
221
281
a1
201
201
221
D21
201
201
a1
201
201
21
oo1
201
201
P21
201
oot
221
201
201
a1
po1
221
201
201
2o1
201
201
221
201
201

2200
2200
2200
ocoe
ralradlra}
oce0
0220
P20
2020
2oe0
o0
2001
2201
0201
oee1
0001
0201
2201
rlrir Bl
2021
2001
2021
20@a1
20e1
2201
2001
D201
210
2010
2010
2210
2010
2010
2210
o212
P10
210
2010
2010
2010
G110
2010
2010
2011
2011

2011
2011

D211
2011
2011
2211
2211

2101
@110
111
1000
1001
1210
1011
1100
1101
1110
1111
oe00
ool
210
2011
2100
2101
2110
2111
1008
1201
1210
1211
1100
1101
1110
1111
2000
p2o1
0210
PA11
2100
2101
2110
A111
1000
1001
1019
1011
1100
1181
1110
1111
2000
2001

2010
2211

0100
2101
o110
®111
1200

CONTENTS
21 002 2001
?8 002 10020
B7 1011 B111
FA 1111 1010
E7 1110 2111
28 0000 2000
3 @011 1110
16 0001 2110
D3 1101 2011
22 0000 2RV
21 2010 2001
10 0021 0020
27 0010 0111
Ch 1100 1181
53 0101 2811
21 02000 2001
21 0010 2001
48 0100 100@
Fa 1111 0100
2z 0010 2010
0 Q0RO 2000
P8 0020 1208
D6 OO D110
10 Q021 2000
PE Q00D 1110
R4 DEOB V100
78 0111 1000
DB 1181 1811
Pz DG D02
E6 1110 21108
07 2000 8111
EE 1110 1112
@7 oG 2111
CA 1100 1010
40 D102 2000
21 002 2001
C6 1100 110
i 0001 2000
D3 1101 2811
20 0022 D20D
21 2010 02Gt
c8 1100 100@
22 Q002 B0
C5 1100 2101
¢D 1100 1101
53 @101 2611
21 0000 POO1
79 0111 1001
C6 1100 0110
10 0001 DOV
D3 1101 @011
20 0000 000G

Diagnostic contents.

100

EZ-80 CONSTRUCTION

139
13A
13B
13C
13D

13E
13F

149
141
142
143
144
145
146
147
148
149
14A
148
14C
14D
14E
14F
150
151
152
153
154
155
156
157
158
159
15A
158
15¢
15D
15E
15F
160
161
16z
163
164
165
166
167
168
169
16A
168
16C
16D

LOCATION

201
o1
201
201
201
o1
801
201
ralr; B
221
221
221
201
Po1
201
201
201
2a1
201
201
201
o1
P21
221
221
201
201
221
201
201
201
201
261
201
201
201
221
o1
201
201
201
ralr: B
201
021
021
201
201
221
201
201
201
201
221

2811
@11
0211
"1 B
o211

o211
211

0108
21022
2100
2100
0100
100
2100
o100
2100
2100
0100
2120
2100
100
2100
21022
2101
pial
2101
2101
2101
2101
0101
2101
P121
2101
Bidl
101
2101
2101
P101
2101
2110
2110
2110
A11@
2110
Pi11@
2110
D110
D110
2110
0110
D110
2110
2110

10021
1210
i1
1100
1101

1110
1111

allrl]
2221
210
2011
21020
101
2110
2111
1200
1001
1210
1811
1100
1101
111@
1111
2200
2001
210
b1y
0100
2101
2110
111
1020
1001
1010
1211
110@
1101
111@
1111
ragralvidrag
oBe1
2010
0211
0100
2101
2110
P111
1200
1001
1010
1011
1100
1101

CONTENTS

2010
1100
alralra v
1100
2101
rdralnal)
1100
1010
1101
2200
2200
1100
2010
1100
2021
2000
2211
rafralralr:]
agralradr
i@ai1
1111
o001
2000
1100
rafralralr]
ralalrdr]
2021
1111
1111
adugeln]
2100
2001
1121
2631
1111
1111
2210
1100
2101
(rjrallvi}
rafralvidea}
1191
2210
ralralvalt
2020
2210
2010
2200
alralrlr
1101
2202
1118
2120

2001
1000
2200
1101
2011

2201
2.1

1111
o011
alralalr
1101
1011
2200
2210
1111
2201
1612
bRG1
120a
@111
1810
1211
o011
2211
rafralral]
ralradrlri]
ufrle bl
1111
1111
2110
1010
ie@1
ragrafrilr]
ralrairfri]
1110
1181
1011
2011
110
2201
1000
1021
1010
[]ralvel”
1020
211
oo1@
2002
16006
1001
1000
1101
2101

Fig. 9-2 cont'd. EZ-80 Diagnostic contents.

)IAGNOSTIC PROGRAM FOR THE EZ-80

101

ig it into the 24-pin socket on the wire-wrap or
nted-circuit board. Be certain that pin 1 is oriented
the same direction as the other chips on the board.
w you are ready to verify the operation of the
-80 by running the Diagnostic Program.

“BRINGING UP” THE EZ-80:
PRELIMINARY CHECKS

At this point the reader should have made the
:cks of the EZ-80 described in Chapter 7. The fol-
ving list of steps are suggested as a reasonable way
cautiously “bring up” the system. (Alas, the author
; been known to throw caution to the winds and
t plug the damn thing in to see if it worked. Temper
s detailed list with your own experience!)

L. Remove any cabinetry so that the EZ-80 wire-
wrap or pc board is accessible. Keep the LED
display and keyboard connected.

). Make certain the 2758 (or 2716) EPROM is in
the proper position (check pin 1 as described in
Chapter 7).

3. Turn on the power switch and then quickly off.

t. Check the fuse. It should be intact. If not, re-
peat the preliminary steps given in Chapter 7.
Bear in mind that you may have burned out
some chips.

. Turn on the power switch. There should be no
smoke visible (seriously!). Sniff a few cursory
sniffs above the board. There should be no “hot”
smell,

. Cautiously test each semiconductor chip by
wetting your finger and testing them as you
would a hot iron. Some should be warm, but not
hot. You should be able to keep your finger on
all but the regulator chip. The regulator chip
will probably be too warm to keep your finger
on.

7. If all is well at this point, you may have seen a
display on the LED display. If so, things are pro-
ceeding nicely. If a display of 0, 1, 2, 3, etc., is
not forthcoming in about 20 seconds from power
on, there may be problems with the EZ-80.

W

o

“BRINGING UP” THE EZ-80:
DIAGNOSTIC OPERATION

The sequence of operation of the EZ-80 Diagnostic
ymm power on is as follows:

1. Power switch turned on.
2. LED display clears. No visible display.
3. Pause 1 to 20 seconds.

4, LED display counts from right to left. Each

digit position counts from 0 to 9.

A display of 1 is displayed for a second or so.

A display of 2 is displayed for a second or so.

A display of 3 is displayed. After approximately

30 seconds, the display is cleared and there is

a 10-second pause. A display of 3 is again dis-

played for about 10 seconds. The display is

cleared for about 10 seconds.

8. A display of 4 is displayed for about 30 seconds.

9. A display of 5 is displayed for about 10 seconds.
The display is cleared. A pause of about 30
seconds follows.

10. A display of 6 is displayed for about 10 seconds,
followed by a clear of the LED display and a
pause of about 30 seconds.

11. Steps 2 through 10 repeat continuously.

N o

If the EZ-80 goes through this sequence several
times, almost all of the system is operative. If no dis-
play occurs, go to the section labeled “Catastrophel”
for remedial action. If the display continuously dis-
plays 1, go to the section labeled “Test 1: RAM Mem-
ory” for corrective action, If the display continuously
displays 2, go to the section labeled “Test 2: RAM
Memory.” If the display continuously displays 3, go
to the section labeled “Test 3: Clock Frequency/NMI”
for remedial action. If the 3 is displayed for a time
grossly different than 30 seconds, go to the section
labeled “Test 3: Clock Frequency/NMIL” “Grossly
different” means a display time greater than 1 minute
or less than 16 seconds (use a stopwatch).

If the sequence above has been successfully re-
peated several times, continue with the following de-
scription of each test. Some of the tests require no
action, while others require adjustments or other man-
ual operations.

CATASTROPHE!

If the EZ-80 does not at least sequence through the
digit display, read this section for corrective action.
Otherwise, this section may be skipped. Have you
performed the checks given in Chapter 77 If you have
not, now is a good time to perform the simple checks
given there. Bear in mind that it may be necessary to
replace one or more burned-out chips. If you have
performed the checks in Chapter 7, then the chips
are probably operative and further checks may be
made.

The Z-80 used in the EZ-80 is made for operation
at a maximum clock frequency of 2 megahertz (2
million cycles per second). Potentiometer R1 controls
this frequency. If the frequency is above 2 megahertz,

102

EZ-80 CONSTRUCTION

1 CYCLE =

1 MICROSECOND
}
l g 4 VOLTS +
+ ::]: - PEAK-TO-PEAK
1 -

1 VOLT/VERTICAL DIVISION
0.2 MICROSECOND/HORIZONTAL DIVISION

Fig. 9-3. EZ-80 clock waveform.

it may simply be too high for operation of the Z-80
microprocessor. Adjust Rl from one “stop” to the
other in several steps. For each adjustment, turn the
power off, then on after a delay of at least 3 seconds
and wait for a display of sequencing digits. If se-
quencing occurs, go back to the previous section for
further checks. For those readers with oscilloscopes,
check the clock at pin 6 of the Z-80 and adjust Rl
for 1 megahertz. The (typical) clock waveform is
shown in Fig, 9-3.

If adjustment of R1 does not help, set the potentiom-
eter midrange and adjust R2 in similar fashion. R2
~controls the rate of real-time-clock interrupts. The
real-time-clock (NMI) interrupts should occur at 100
per second. If the potentiometer is at an extreme, this
could conceivably affect proper operation of the
EZ-80. For those readers with oscilloscopes, check the
NMI interrupt at pin 17 of the Z-80 and adjust for
100 hertz. The (typical) NMI waveform is shown in
Fig. 9-4.

If neither of the above actions results in digit se-
quencing, the following suggestions may be followed.

1. Recheck all wiring with chips removed.

2. Perform the checks given in Chapter 7 with all
chips inserted except for the 2758 (or 2716).

3. Verify the programming of the 2758 once more.

4. Replace the Z-80, 6810, and 8255 and repeat the
Diagnostic operation.

Remember, there is a logical reason for failure of
the EZ-80 and it must fall into one (or more) of the
following categories: wiring problems, erroneous
EPROM programming, misadjustment of the clock
or NMI, or bad chips (roughly in that order of prob-
ability)!

1 CYCLE =
10 MILLISECONDS

4 VOLTS
PEAK-TO-PEAK

+
+
pe

1 VOLT/HORIZONTAL DIVISION
0.2 MICROSECOND/HORIZONTAL DIVISION

Fig. 9-4. NMI waveform.

INITIALIZATION

When power is turned on, execution of the EZ-80
Diagnostic starts at location 0. The stack pointer SP
is loaded with 880H to initialize the stack to the top
of RAM memory. Next, the PPI is initialized by out-
putting a value of 89H. The LED display is then
cleared by zeroing PAO-PA7 of the 8255. With PA4-
PAT equal to zero, no current will flow in any of the
LED segments.

Next (SCOPE), the EZ-80 Diagnostic loops from
location 14 to 15 for 7+%65,536 counts, or approxi-
mately 10 seconds for a clock frequency of 1 mega-
hertz. This time may be used to check the data and
address outputs of the Z-80 with an oscilloscope.
There should be activity in the form of pulses of less
than a microsecond on many of address lines A0-AS,
and data lines D7-D0. The pulses observed will not
be very regular and sample waveforms cannot be
shown.

LED DIGIT SEQUENCING

The next section of the EZ-80 Diagnostic sequences
the LED digits from right to left, counting each from
0 to 9. Each digit is displayed for about 1 second by
the loop at LED10. An outer loop at LEDO5 incre-
ments the character displayed from 0 through 9. An-
other outer loop at LEDO5 enables first the rightmost
digit (10H address), and then the other three digit
positions (20H, 40H, and 80H).

TEST 1: RAM MEMORY

Test 1 of the EZ-80 Diagnostic performs a very
cursory check on 6810 RAM memory operation. First,

A DIAGNOSTIC PROGRAM FOR THE Ez-80

103

zeros are stored in RAM memory location 802H and
then read back. If other than zero is read back, the
EZ-80 Diagnostic loops at location 49H. Next, all ones
are stored in RAM memory location 802H and then
read back. If other than ones are read back, the pro-
gram loops at location 54H. In either case, the effect
of the loop is to cause 1 to be displayed continuously
on the LED display indicating that one or more data
lines connecting the Z-80 to 6810 are bad, or that the
6810 chip is bad. Corrective action would be to re-
check 6810/Z-80 wiring and to replace the 6810.

TEST 2: RAM MEMORY

Test 2 performs a check on all locations in 6810
RAM memory from 802H through 87FH. Zeros and
ones are alternately stored in each location. The test
is repeated 65,536 times. If other than zeros or ones
are read back, the program loops at 75H or 7CH, re-
sulting in a continuous display of 2. Corrective action
would be to replace the 6810 RAM.

NMI INTERRUPT PROCESSING

From the instant that the EZ-80 is “powered up,”
NMI interrupts occur at a rate of (ideally) 100 times

per second. Each interrupt causes an automatic
branch to location 66H. The contents of 66H is a
jump to location NMIHAN (161H). This NMI Inter-
rupt Processing Routine increments (adds one) to the
contents of locations 800/801H, treated as a 16-bit
value. These locations serve as a real-time-clock count
that counts from 0000H through FFFFH (0 through
65,535 in decimal notation) every 65,535/100 = 655.35
seconds.

The real-time-clock count is used for Test 3 of the
EZ-80 Diagnostic on, as a means to determine delays.
Resetting the locations to 0 and then checking for a
count of 100, for example, would indicate that 1 sec-
ond has elapsed.

It is important to note that the NMI interrupts oc-
cur independently (and invisibly) of the operation of
the rest of the EZ-80 Diagnostic. The action of the
NMI exercises the top locations of 6810 RAM (for
storage of the return address) and the first two bot-
tom locations of RAM. In fact, then, memory test 1
is probably redundant if the NMI interrupt is active.
One operation that could be performed in case of
a catastrophic failure in the EZ-80 would be to place
0 volts on pin 17 of the Z-80 (Fig. 9-5) to see if the
Diagnostic sequences through to Test 3 (where it
will remain). If this fix allows proper operation up

CONNECT THESE TWO POINTS TO
GROUND PIN 17 OF Z-80

(USE ALLIGATOR CLIP ON CAPACITOR
END AND SHARP PIN OR PROBE FOR
PIN 17)

r—-——-"-"—-"--"-"""—"—""""¥"-""—=-"—"—-—"—-"—"—"——"" == ;/_ _______________________ -
e e e e e e e et e v v . —— —_— — — —— e et g e — ——— 2 —] . . — —— —— — ———— — -
R A -1 - - i i e e 1
R U S S I . —_ - 4 —— I’
—
280 !
17 18 19 20 L
r-—-———~""""~""~>""™>"~">"™""™"™"™>"™""™"™/7"™""7™7"77 E e I :'; I :
=== ——— = = === -] === f
L P!
L ;!
e m e — IR R ——— | 4
[I I !l]) N N S P - !
T)
|1 1|
| Lf=———1 -3 -f—— L] e - |
| i L 4+ __ 1 P I S N +h |
| r +lo I
j 1 i Jl |
e I - ——-1
e e e e —— — _ e~ — :
| |
: i
e ————————————— e ———— ~ |
D o e ! .
| ||
| { |
L e -
T S B
U |

TOP VIEW (BARE SIDE)

Fig. 9-5. NMI disable.

104

¥Z-80 CONSTRUCTION

to Test 3, further checks should be made on the NMI
real-time-clock interrupt.

TEST 3: CLOCK FREQUENCY/NMI

This test in the EZ-80 Diagnostic is used to cali-
brate the clock frequency of the EZ-80 and the NMI
frequency. The time between the first display of 3
and the blanking of the 3 should be exactly 30 sec-
onds. Use a stopwatch to adjust R1 until the period is
as close to 30 seconds as possible. If the period is not
adjustable to 30 seconds + % second, check compo-
nent values or use a new MC4024

The second part of this test tests the NMI fre-
quency. The time between the second disappearance
of the 3 and the appearance of 4 should be exactly 10
seconds. Use a stopwatch to adjust R2 until this period
is as close to 10 seconds as possible, If the period is
not adjustable to 10 seconds = % second, check com-
ponent values or replace the MC4024. Fine tuning
of the NMI frequency can be performed during the
applications programs that require a real-time-clock
(not all of them do).

If the EZ-80 Diagnostic “hangs” during this test,
and continually displays the second occurrence of
the digit 3, the NMI interrupt is not operative. Cor-
rective action would be to recheck the NMI wiring
and component values or to replace the MC4024.

Some of the applications, such as the Timer and
Frequency Counter/Tachometer, call for precise NMI
and clock frequencies. A “fine tuning” of R1 and R2
is possible by adding small resistance values in series
with the 10K fixed resistor from R1 or R2 to ground.
This results in a total resistance of greater than 10K
ohms as follows:

RTOTAL = RNEW -+ 10,000 ohms

adding 10 ohms, for example, will result in a total re-
sistance of 10,010 ohms, which will increase the NMI
or clock frequency slightly. Either a small series fixed
or variable resistance may be used to “fine tune” in
this fashion to obtain frequencies very close to 100 Hz
or 1 MHz.

TEST 4: OUTPUT LINES

This test enables output lines OUT1 through OUT6
for % second and then disables the lines for % second.
This action is repeated for 30 seconds. The resulting
output on all lines is shown in Fig. 9-8. The output of
any line may be checked with a simple LED logic
probe (see Chapter 7), a commercial logic probe, a
voltmeter, or an oscilloscope. Cycling from 0 to 1 and
back should occur at a 1-second rate for 30 seconds.

If any of the six lines do not show the cycling, re-
check the wiring to the 74368 or replace the chip.

A

f+——-———REPEATS FOR 30 SECONDS ——
. CYCLETIME ____

= 1 SECOND
e ON — —ope—— OFF o
= /2 SECOND| = '/» SECOND
— ON (= 3.6 VOLTS)
Ja— be— — QFF (0 VOLTS)

Fig. 9-6. Test 4 OUT line waveforms.

TEST 5: INPUT LINES

This EZ-80 Diagnostic test checks the state of input
lines IN1 through INS5. All five lines are scanned for
30 seconds. If any line is low (ground), its number
is displayed. One or more lines may be made low by
clipping a lead from ground to the line (ground is
shown in Fig. 9-5). All lines should be tested in this
fashion and the wiring around the 74L.S04 rechecked
or the chip replaced if any line fails to be detected.

TEST 6: KEYBOARD SCAN

The last test of the EZ-80 Diagnostic is the key-
board scan test. After a 10-second display of “6,” the
Diagnostic continuously scans the keyboard, looking
for a key depression. If a key is found to be depressed,
its row and column number are displayed. The row
and column numbers for the 12 keys are shown in
Fig. 9-7. The test continues for 30 seconds.

A complete check of all keys should be performed.
If a key is continuously on or cannot be activated, an
off line check of the keypad should be made with an
LED logic probe or a voltmeter until the key operates
smoothly. If the keypad plug is not connected and a
key is still on, check the 74LS05 and other wiring,
or replace the chip.

THE EZ-80 DIAGNOSTIC

We've been speaking primarily about the opera-
tion of the EZ-80 Diagnostic without regard to how it
operates. The reader may care to examine the listing
in detail to see how the various components of the
system operate. The comments column (the last col-
umn) is indented to show nesting of loops, which
may help the reader in following the flow. The pro-
gram proceeds from start to end in straightforward

A DIAGNOSTIC PROGRAM FOR THE EZ-80

105

coL CoL coL
4 2 1

1-4 1-2 1-1
w| OO O
2-4 2-2 2-1
w| OO

34 3-2 31
w| OO O

4-4 42 41
©

Fig. 9-7. Keyboard scan testing.

fashion, with the exception of NMI processing. An
NMI may occur at any time in any part of the pro-
gram. Where it does, a transfer to location 66H is
made with the return address saved in the stack.
Location 66H contains a jump to NMIHAN at 161H.
This routine first swaps the general registers (EX and
EXX) and then bumps the real-time-clock count in
800/801H by one. The general registers are then
swapped again and a RETN (RETurn from Non-
maskable Interrupt) is made to return control to the
interrupted instruction.

Only one other subroutine is used in the EZ-80
Diagnostic, the DELAY subroutine at 153H. This
subroutine can be called at any time and simply de-
lays 1 millisecond (%ooo second) for every count in
the HL register pair, assuming a clock frequency of
1 megahertz.

SECTION 3

EZ-80 Projects

CHAPTER 10

EZ-80 Applications Programs

This section describes the EZ-80 software. Previous
chapters have described the theory and construction
of the EZ-80 hardware with some general software
theory. Section 3 will in large part consist of descrip-
tions of applications programs for the EZ-80, i.e.:

® A Microcomputer Educator for running short
tutorial programs

¢ A Combination Lock to create a coded electronic

lock

A Burglar Alarm that detects up to five inputs

A Morse Code Generator that sends random code

for code practice

A Telephone Dialer that records and automati-

cally calls up to 100 telephone numbers

® A Morse Code Sender that sends Morse code
messages for amateur radio or other applications

® A Frequency Counter/Tachometer that counts
frequency pulses up to 50,000 pulses per minute

¢ A Timer that can be programmed for 2 minutes
to 100-day cycles

® A Music Synthesizer that plays electronic music

In addition, a chapter is presented on “blue-sky”
projects for the EZ-80. With proper user programming
the EZ-80 can be used for a variety of user projects
including intelligent controllers for computer systems
and distributed processing.

The remainder of this chapter describes the Com-
mon Area program used in all applications programs
of this section and “standard” hardware devices that
can be attached to the EZ-80 for control, output, and
input for the applications.

MEMORY MAPPING

The memory mapping for all applications in this
section is shown in Fig. 10-1. The area from location
0 to 1IFFH (511) is taken up by a program called the
Common Area. The Common Area is a collection of
subroutines that are useful in applications programs,

109

in addition to a routine that processes the NMI (real-

time-clock) interrupt and updates the display.

The second half of EPROM from about 200H (512)
to 3FFH (1023) is available for the applications pro-
grams in this book. In many cases the applications
program will require almost all of this area. In a few
cases the applications programs are shorter and more
than one can be put into EPROM at the same time.
A special case occurs when a 2716 EPROM is used.
The 2716 adds another 1024 bytes of EPROM, mak-
ing it possible to use more than one program in
EPROM. However, the programs presented here must
be relocated by some special techniques in this case.
These techniques are described later in the chapter.

The RAM area is located at locations 800H (2048)
to 87FH (2175). The first 24H locations of RAM
(800H-823H) are used for variable storage for vari-
ables used by the Common Area. The last 20 or so
locations are used by the memory stack for CALLs
and storage of temporary data. The area used by the
stack probably does not exceed 20 bytes although at
any given time it is variable and is dependent upon
the number of nested levels of CALLs and PUSHes
in effect. Two bytes of stack are used for every level
of CALL or for every PUSH. The remaining RAM
area is available for applications program variable or
table storage. Assuming 20 locations for stack use
and 36 for Common Area use, this leaves 128 — 56 or
about 72 locations from 824H through 86C.

COMMON AREA PROGRAM

The Common Area program is shown in Fig. 10-2.
This data must be programmed into EPROM for all
applications programs in this book. The only loca-
tions that will change are locations 1 and 2. These
two locations define the address of the applications
program. In many cases the starting address of the
applications program will be 220H, and a 20H can
be programmed into location 1 and a 02H can be

110

Ez-80 PROJECTS

DECIMAL HEX LOCATION 11 POINT T
° 0 % LOCATION 2| START OF
APPLICATIONS
COMMON PROGRAM
AREA
PROGRAM
511 IFF
Sz 20 AVAILABLE FOR
2758 (1K)
APPLICATIONS
PROGRAMS
1023 3FF
1024 400 LIMIT OF 2758
ADDITIONAL AREA
FOR APPLICATIONS
PROGRAMS WHEN
2716 (2K)
EPROM USED
LIMIT OF 2716
2047 7FF
2048 800 . ~— COMMON AREA VARIABLES
ekl bee ekl ™~ APPLICATIONS PROGRAM
as e VARIABLES RAM

STACK AREA (VARIABLE)
Fig. 10-1. EZ-80 memory mapping for applications programs.

programmed into location 2. Another caution: Note
that locations 36H and 37H are left unprogrammed
as are SDH-65H. This is noted so that the user does
not erroneously go on to the next byte if he or she
is programming while looking at the listing.

SUBROUTINE VECTORS

The first instruction executed after powering up the
EZ-80 is the “JP PROGRAM” at locations 0-3. With
the address of the applications program in locations
2 and 3, this will result in a jump to the start of the
applications program (typically 220H).

The applications program uses 10 subroutines in
the Common Area. The vectors for these subroutines
are at locations 3-20H. These vectors are simply jumps
to the subroutines. When an applications program
wants to read a character from the keyboard, for ex-
ample, it executes a “CALL GETCHR,” which calls
the instruction at location 9. This instruction jumps to
subroutine GETCHS at 109H, where the character is
read and a return is made back to the applications
program. The only reason that a CALL is not made
directly to the subroutine is to conveniently group
the locations of all subroutines.

INITIALIZATION SUBROUTINE

The primary subroutine in the Common Area is the
initialization subroutine INIT (all subroutines will be

called by their vector designations). When INIT is
called at the start of the applications program, it
initializes the 8255 PPI by outputting an 89H. This
sets up the 8255 as 8 sets of outputs (PA7-PAO), 8
sets of outputs (PB7-PB0), and 8 sets of inputs (PC7-
PCO0). The second thing that INIT does is to move
certain variables from the applications area to the ap-
plications RAM area starting at PROGR or 824H.
The variables that will be moved range from none
to seventy or so, depending upon the applications
area. In moving the variables, they are initialized to
initial conditions which are necessary in many cases.
For example, the Combination Lock applications pro-
gram uses a default sequence of code digits. Every
time INIT is called, this default sequence is loaded
into RAM. The sequence may be redefined in the pro-
gram, but the default values allow initialization of a
known code.

COMMON VARIABLES

The RAM area below 824H is dedicated to the
Common Area variables used by the Common Area
program and, in some cases, the applications program.
The first 5 bytes represent the real-time-clock vari-
ables of days, hours, minutes, seconds, and hun-
dredths of seconds. The next 7 bytes are the LED dis-
play buffer; the first three bytes are never displayed
but are used to hold garbage stored during binary to
bed conversion (BINBCD). The real-time-clock may
be disabled by storing a nonzero value in DISABL.
Two variables associated with automatic (NMI) up-
date of the display are next: LEDNO and LEDPOS.
BLINV may be set to automatically blink the display.
The next 16 bytes are dedicated to the input buffer
INBUF. Input digits are stored in this area as they
are read in from the keyboard. The last variable is
NOCHR, which holds the number of characters input
during entry of keyboard commands.

NMI INTERRUPT HANDLER

The NMI Interrupt Handler is always active. Every
%00 second this routine is automatically entered at
location 66H (NMIHAN). The NMI routine serves
two functions: It updates the real-time-clock and it
outputs the next digit to the LED display.

When NMIHAN is entered, the cpu registers are
switched; this action keeps any flags and registers used
by the applications program and Common Area rou-
tines intact. If the DISABL flag is not set, the routine
then updates the real-time-clock.

The real-time-clock is updated by adding 1 to the
HUNDS (hundredths) variable. If this is equal to

Z-80 APPLICATIONS PROGRAMS 111

[l BT 2T Y LT TEILEEIL SIS SIS SIS LSS ZSSL L E LSS L 2 2L X 22

22101 s Z8BMDP COMMON AREA *
Da10e 3 QD24 *
OOLD3 J*¥XEREKEREREREEREREEEREEERERE R R EERERREHRE R RERR R
02140 3
4200a 2150 ORG @ IEPROM LOCATION B
P0150 3
20170 3 JUMP TO PROGRAM
voi18e@ s
Q200 C3 ap17@ DEFE AC3H $"JP PROGRAM®
Q@1 FFFF 20191 DEFW -1 $PUT ADDRESS HERE
02ze0 3
Q2210
0@zz@ ;5 SUBROUTINE VECTORS
PO230 ;3
Q@3 C3zi1@ Qx40 INIT JP INITS SINITIALIZATION SR
06 C3CFOA @B:z50 INPUT JP INPUTS s INPUT SR
QB@e C3@9d1 20260 GETCHR JF GETCHSE $GET ONE KB CHARACTER GR
p@ac C31CO1 Q0270 KEYSCN JF KEYSCS ;5CAN KEYRBOARD SR
el C35:z@1 BRZEA ROW JF ROWE $SCAN ROW SR
aR1z C345@1 20270 RCDRIN IR BoDRIS s CONVERT BCD T BINARY 5R
AQ15 C3E001 00300 BINBCLD JP BINBCE TCONVERT BIMARY TO BCD ER
Q218 C3ADD1 BB310 DELAY JP DELAYS IDELAY SR
AB1E C3RAQY1 Q@320 BLINK JP BLINKS tBLINK LEDE SR
QA01E C3CARL PB33@ BRANCH JP PRAMNCS $BRANCH SR
na34@ 3 ‘

DR3TD SEREXEEEEREAEEEEEXFEREERRREEREAEZEEE XXX AR XX EXREXEAEFRREEEFRE SRR

D035 % INITIALIZATION PROGRAM, MOVES IMITIALIZATION DATA *
P@370 3% FROM EPROM TO RAM. *
Q0330 ;= ENTRY : (HL)=BTART OF PROGRAM DATA *
20370 s * VEC)=# OF BYTES OF INIT DATA *
PazIn ¥ CALL INIT *
aQ4B@ s* EXIT: PROGRAM [LATA MOVED *
APL41D I EFREEFRRFFLEFEEXFEEFEFF TS FLEEERERELEE A EEREEEELEEFEETREERE
ADLHZD 3
Q430 INITS Ea) %
IEBY D@4 4@ LD A B7H $SET MODE CONTROL WORD
0L3a3 nR435@ OuUT {3134 $13ET MODE @y SURMODE 3
112408 20440 LD DEs PROGR $ETART OF PROGRAM RAM
EDRQ Pa47@ LDIR FMOVE PROGRAM DATA
213900 Q4B LD HL+ INITD $5TART OF GEN VARIABLEE
110008 00470Q LD DE» 300H SEPROM DEFAULTS
D1z400 205020 LD BC. INITL sEPROM SIZE
@033 EDEBEQ w512 LDIR IMOVE GEN VARBLS
@35 (9 20520 RET PRETURN TO CALLING FROG
@522 3
QP53 3 RESTART 38H LOCATION FOR PATCHES
VA543
ne38 @@5x5 ORG IgH
2038 C9 O526 RET , SRETURN TO FF OINSTRUCTION
22530
@548 3 INITIALIZATION DATA COMMON TO ALL PROGRAMS
Pas5@ 3
2037 o 2@56@ INITD DEFE @ sRTC DAYS (DAYS)

Fig. 10-2. Common Area program listing.

112 Ez-80 PROJECTS

aa3a 0@ Q0570 DEFB 2 $RTC HOURS (HOURS)
3R 20 2@575 DEFB @ SRTC MINUTES (MINS)
Q@3¢ 2@ 22580 DEFB @ sRTC SECONDS (SECS)
22D 00 20590 DEFB @ 3RTC HUNDREDTHS (HUNDS)
PA3E 20 Q2530 DEFB @ SPROTECT BYTES FOR LED
QA3F O 20610 DEFE @ sPROTECT BYTES FOR LED
D42 02 BR&20 DEFB Q $PROTECT BYTES FOR LED
has1 2@ QL2320 DEFB @ sLED BUFFER (LEDBUF)
A4z BO Q640 DEFR Q@ sLED RUFFER DIGIT 2
2043 00 LA&L52 DEFE 0] sLED BUFFER DIGIT 3
2044 00 BAsL@ DEFE Q@ sLED BUFFER DIGIT 4
AR45 2@ ARs7A DEFE @ sDISABLE RTC (DISABLE)
Q0446 @3 22530 DEFB 3 sI_ED DIGITH# (LEDND)
DR47 10 20474 DEFE 1@0H sLED ADDRESS (LEDPOS)
Q248 0O 2A700 DEFB @ sBLINK {(BLINV?
2049 Q@ A7 DEFER @ sPROTECT BYTE FOR INPUT
204A 20 Qa7za DEFE @ SPROTECT BYTE FOR INPUT
248 20 Q7320 DEFB @ TPROTECT BYTE FOR INPUT
AB4C PRVA DA77 4@ DEFW @ Tt INPUT BUFFER 1 INBUF)
D2Q4E Q0@ 2a75@ DEFW al
Q256 002 QA7 L0 DEFW @2
A5z 2000 2770 DEFW pal
054 Q0 aR7z0 DEFW a
20546 2006 alniracdv] DESW &
vas8 oA waAz0a DEFW @
2054 2200 20810 DEFW a
AesC 60 RA3:za DEFB 6] s# OF INPUT CHRS (MOCHR)
QRz4 Q@820 IMITL £ZaU $-INITD 1SIZE OF DEFAULTS
QR340 s
DRESA : LOCATIONES OF VARIABLES AFTER RELOCATION
ARA3602 s
palsinln} PRAE7A DAYE Eal Se@H
2801 Q@830 HOURS EARLE) DAYS+1L
aeaz AREZE MING Eqi SRS+
as803 Q278 SECS Eald MING+1
heas 2708 HUNDS Sl SECE+1
2308 Q0913 LEDRUF ol HIUNDS+ 4
pat=tn. I QA9 DISABL EdU LEDBUF+4
a3@D ARS3IQ LLEDND il DisABL+1
AERE AAFEIH LEDFOS Zou) LEDMND+1
QA30F 30740 BLINV Ei) LEDROS+1
aE13 AR5 IMNRBUF = SZLINV+S
B8z3 V@750 NOCHR ITMRUF+14&
BZ4 AR97@ PROGR NOCHR+1
DOIED 1 EXEEEEEE X EEFEE X EE IR EERERREEFEEFEFEEEFREFEEEFFEEERREE
Q970 1% NMI INTERRUPT HANDLER. JFPDATES RTC AND DISPLAY *
D100 s+ ENTEZRED ONCE EACH 1 /10@TH SECOND *
D110 S EEXRXEEXEEEREEXEEEEEEERRER L X R EREEFEREE RS REREERRREREERAHR
A10:0 3
2066 Q18z5 ORG &6H sFIXED NMI LOCATION
]t FoYY D103@ NMIHAN EoU E)
Q66 @8 A1240 EX AF « AF® 1SAVE AsF
QL7 D9 2125@ EXx 15AVE OTHER REGISTERS
DA68 3AQCAE 21060 LD As (DISABL) 118 RTC FUNCTION RE®@D?

Fig. 10-2 cont'd. Common

-80 APPLICATIONS PROGRAMS

113

2068 B7 01070
PpR6C 028 Qiaze
21090
2110@
Q1110
RRALE 91120
QARHE 210408 21130
2271 34 211402
P72 7E 21150
2073 FEb&S Q11402
Q@75 381F 21170
AA77 AF 21180
wa7a 77 21190
2a79 zB 21200
DA7A 34 A1z1@
@78 7E A1zz@
207C FE3C P1230
DAVE 38146 D124
2280 AF 21250
a8y 77 D1zé6@
a8z 2B a1z7
Q@83 34 A1280
ne84 TE 21290
p@85 FE3C 21200
©¥@87 338@D Q131
AR89 AF DL3z@
PA8A 77 01330
2088 ZB A134@
208C 34 21350
AQ8D 7E A13&D
Q08E FE18 QL3370
AQ98 2204 213e@
29z AF Q1370
@93 77 D420
Q094 R Q1410
Rags 34 21420
Q1430
A144@
A145@
Al46@
2296 D1470
20946 IAQDRE 1480
B099 4F 21470
A09A 24600 21500
209C Z10808 @151@
2@9F @9 A5zA
POAD 46 A1530
20A1 3ARERR 21540
20A4 E@ 31550
P0AS D322 D1560
AOA7 3ABDO8 B1565
22AA 3D A1570
DRABR ELB3 21580
@@AD 3z20Des 215950

OR A
JR NZ s+ LEDOUT
H
3
UPRTC E&QU $
L.D HL s HUNDS
INC (ML)
I.D Ay tHL)
CP 10@
JR CyLEDOUT
XOR A
LD fHLLY A
DEC HL
INC (HL?
LD A (HL)
CR 50
JR Ca LEDOUT
AOR A
D LY A
DESC M
INC (ML)
LD Ay PHLY
P 5@
JH Ca LEDOUT
LOR A
L.D (HL Y A
DEC HL
INC {HL?
LD A (HL)
e 24
IR CrLEDOUT
XOR A
D (HL T+ A
DEC HL.
INC LHL

$CODE TO MULTIPLEX LED DISPLAY.

§TEST DISABLE
160 IF MO RTC REQR®’D

CODE TO UPATE RTC.UPDATES DHMSH IN 5 BYTES

SPOINT TO 10@THS
1BUMP 10@THS

$GET COUNT

1TEST FOR 1 SECOND
5Go IF @-99

1@

ISTORE @ AMD CARRY
SPOINT TO SECONMDS
sBUMP SECONDS

IGET COUNT

STEST FOR 1 MINUTE
s IF A-59

1@

Q AaMD CTARRY
F T MINUTES

MPOMINUTES

FOR L DU

TETORE @ AND CARRY
FPOINT TO HOURS
TRBUMP T HOURS
TGET COUNT

$TEST FioN
10 IF
%
1STORE @ aND CARRY
H INT T DAYS

MP DAYE

JUR

FOLUR OLEDR DIGITE

sIN LEDRBUF,ODUTRPUT 1 OF 4 TO LEDS.

LEDOUT Eol $
LD A (LEDND)
LD Car A
..D Z, @
LD HL+ LEDRUF
ADD HLs BC
tD B (HL)
(s Ay (LEDPOS)
OR &
ouT QA
LD As (LEDNO)
DEC A
AND 3
LD (LEDNOY A

1GET DIwlT 4

SNDW IN O

TNOE IN BC

1 ED BUFFER

$POINT To DIGIT
$GET CURRENT DIGIT
sLED POSITION ADDRESS
MERGE

SOUTPRUT

sDIGIT #

BUMP DIGIT #
IMODULD 4

TRAVE DIGIT #

e

an

Area program listing.

114

Ez-80 PROJECTS

oBeo
Pl S
Qaes
Qee7
Qe
QeeC
ABBF
20co
apcz
B2OCs
'a]raforg
QACY
vace
aacc
Jach

D@CF
DACF
20Dz
D@D4
2@DS
PaADs
20D
@ODA
2ODE.
2aDD
20DE
ADE®
DRE
DRE3
DOE 4
QRES
DRE7
QOES
DOEA
POER
RREC
@@ED
QOEE
RoF 1
QOF 3
DOF 4
QOF &
DOF9

3AQE@S
cez7
200z
JEl1@
320E@8
JARFRR
B7
=B@9
3A0408
Ec4@
200z
D3
a8

D9
ED45

211308
PEDR
ES

€5
CDO700
1

El
FEFE
s
FEFF
2008
79

B7
ZEEE
@D

o

13E#A
77

ac

ES

0%}
11epes
as0a
79
FE@4
FAFEQ®
3EQ4

21510
A6z
1630
@1640
Q1650

R1660
Q1670
1650
21700
21710
Q1720
@173
@174
175

17560
2177@
a17g@
a1770
a1z
21310
B1815
1320
P1G30
@1340
1850
21850
LA gl
1202
pi7i@
31720
A173Ed
Q1740
D15
B17560
niF7E
21730
D179@
Azoee
Az

LD As (LEDPOS) ;LED POSITION ADDRESS
SLA A TALIGN
JR NZsLED1@ 7GO IF OK
L As 10H sSTART OVER
LEDI® LD (LEDPOS) 1 A sSAVE POSITION ADDDRESS
LD As (BLINV) 318 BLINK ON?
OR A iTEST
IR Z+LEDZO 1GO IF NO
LD Ay (HUNDS) SGET 100THS
AND 40H SGET &4/10@THS BIT
JR NZ»LEDZ@ 1GO IF NOT @
ouT (@154 $TURN OFF
LEDZ@® EX AF s AF ISWITCH AsF
EXX $SWITCH OTHER REGS
RETN tRETURN FROM NMI INT
FH TR TR R R LR B R EEEEEE T LR R R AR R AR R RS R R LR R RS
s¥ GET INPUT SUBROUTINE. GETS AN INPUT STRING OF *
SE 0 CHA RS *
1% NO BPECIAL SETUF *
3% CALL INFUT *
P* EXIT: INPUT CHARACTERS IN INBUF *
1% (HL)=FOINTS TO LAST CHARACTER *
1x (C)=# OF CHARACTERS INPUT *
AR EEEE R LR ERE R R R R R E R AR EEEE IR R EEREEE R SRR R R RS
INPUTS EqU $
LD HL s INEUF SPOINT TO INPUT BUF
LD Cr it $INITIALIZE # OF CHARS
INPOS PUSH HL {SAVE POINTER
PUSH BC 1SAVE COUNT
CALL GETOHP T CHARACTER
POP G.C ORE COUNT
POR HL. POINTER
P DFEH T FOR END
RET z TURN IF DONE
CF QFFH PTEET FOR EACKSPACE
IR NZIsINPLQ G0 IF NOT BACKSPACE
LD A SGET #
0R A tTEST FOR @
JR 2+ INFOS 160 IF NOME INFUT
DEC c s ADJUST COUNT
DEC H PADJUST POINTER TO LET
IR [NP@S 1G0 FOR NEXT
INP1Q LD (HL) 14 1STORE CHARACTER
INC c FBUMP COUNT
PUSH HL 1SAVE PNTR
PUSH BC PSAVE COUNT
LD DE s LEDBUF +3 {LED BUFFER DESTINATION
LD 810 $ZERD HIGH ORDER
LD AsC $GET COUNT 1-X
e 4 $TEST FOR 1-3
JpP Ms INP11 160 IF 1-3
LD Pr b 14 DR ABOVE

Fig. 10-2 cont'd. Common

-80 APPLICATIONS PROGRAMS

115

alul =
BAFC EDEB
DoFeE C1

QOFF Et

@a1ee =
2131 CBst
d1@a3 =
Qi@as
2106

21@7 18CE

2109
109
210C
?10E
D10F
11z
D114 Z10ADQ
2117 CD1S20
211A Fi

O11R %

CDRCRO
ZEFE
Fs
CDOCOD
ZOFB

@11cC
211¢C
OL1E
Do
@123
0125
@127
0129
@1ZC
Q1zE
0130
213z
2135
2137
2139
D13E

26@3
3EBO
CDoFo@
2025
Tl
3E4@
CDOFe
2B1C
be@9
3EZ0
CDoAFQ@
2013
Boe@z
310 7
cheroa

E-A—Ja—

82130
140
@z15@
02160
Bz17@
0z18@

INP11Y

GET

GETCHS
GET10

@233
D340
Rz2350
PBa3s@
02370
nz3Ed
@ 370

SETZO

1
' ¥

QX480 WEYSCS
0Z530
22540

Q24600
P:610
B2620
@z630
Q2640
Bo&50
D2660
RA2&70

LD CsA
LDDR

FOP BC

POP HL

INC L

BIT 449 C

JR Z: INPQ@S
DEC HL.

DEC c

JR INPAS

s COUNT OR 4
s TRANSFER FOR DISPLAY
tRESTORE COUNT
sRESTORE PNTR
$BUMP POINTER
sTEST COUNTER FOR 1é
360 IF LT 16
3DON®T ALLOW
$MORE THAN 16
s CONTINUE

EEEEREREEEFREEFEREELEEEEEEREEEEREEEE LR ERERERREEEEREER R
CHARACTER ROUTINE. GETS ONE KEYBOARD CHARACTER.

ENTRY :NO SPECIAL SETUP

EXIT:

Ccall GETCHR

(AY=BCD DIGIT @ TO 9

PBRACKET,

-1 FOR LEFT

OR -2 FOR RIGHT BRACKET
PEEEREEERFREEEEEEERR SRR EEEEREEREEREEEEEEERREREE RS H

Equ %

-1 KEYSON :TEST FOR CHAR
JR L1 GETL@ 16O IF MONE

5H AF 15AVE CHARACTER
CALL KEYEON $TEST FOR CHAR
JR NZI«GETIZO 130 IF SAME CHAR
D His 1@ t1@ MILLISEC DELAY
calL DELAY sDELAY SR

POF AF tRETRIEVE CHARACTER
RET ;RETUPN

3 hEYEUhRD

(A)=BCD DIGIT @-

Gy -1

FOR LEFT BRACKET

*
*
*
s
*

SCAN TCGT C”R PEY ”QEJ:. *
ENTRY T MO SPECIAL SETUP *
catL EYSON *

EXIT: I FLAG SET IF NO KEY ELEG *
*

-ﬁ-

‘P ‘ﬂ k”R PIGHT

”RAf}FT

Eaq £

LD Gy 32 SFOR "3 HEY

L.D A 30N sROW 1

CAall O sTEST ROW 4

JR NI«eREY10 a0 IF NON-ZERD
LD Pa b SFOR "4 KEY

LD A 4QH SROW 2

oAl ROW sTEST ROW &

JR NZ+KEY 1@ G0 IF NON-ZEROQ
LD B9 sFOR "9 KEY

LD Ay 20H SROW 3

CALL RO i sTEST ROW 2

JR NZSKEY1@ G0 IF NON-ZERO
LD 2.3 IFOR ")y KEY

L.D Ay 19H SROW 4

CALL ROW sTEST ROW 4

Area program listing.

116

Ez-80 PROJECTS

213E
2140
Q142
Pl1a4
Q146
@148
A144
A14¢C
Q14E
Q2150
@151

B
@15z
2154
31556
aise
2159
A15R
@15¢C
215D
@15F
2160
Q162
A163

@165
@165
B1s46
Q169
216A
A16R

Q154

2810
D&@z
=806
CR7F
200z
3EFE
@&FF
Ce78
1801
AF

ce

DR@Z
Es@7
EE@7

3807
25
B7
OF9

R={
78

B7
cey

D3
Z10gen
29
ES
29

D268
DZ700
02710
22720
22730
2740
2750
22760
22770

2780
02790
22800
PI810
0820
D830
02340
DIE45
22850
PIELR
RI87@
PIEER
P35
22700
BI71@
22930
2935
PI940
92950
229:0
02970
2780
22990
23000
23010
22020
23030
03040
23050
23040
23070
2080
23090
23095
23100
2311@
3117
23115
23120
23130
23140
23150
03160
B3170
23130

JR - ZrREYZ0 G0 IF NO KEY PRESS
SUB 2 SNOW —1,0s+1
JR ZsKEY1@ G0 IF "@" KEY
BIT 73 A 5TEST SIGN
JR NZ,.KEY1Q G0 IF MINUS
LD AsBFEH $SET RIGHT BRACKET
REY1Q LD B, @FFH ;DUMMY VALUE
BIT 74B SRESET ZERD FLAG
JR KEY30 sRETURN
REYZ@ XOR A SSET ZERQ FLAG
REY 3@ RET SRETURN

k)

FHEEEEFEXEEEEEEEEER LA LR ERERE R EEE R EEE R R RS R R EEEER

% ROW SUBROUTINE. TEST SPECIFIED KEYBOARD ROW *
HE ENTRY:{2)=RIGHT HAND BCD VALUE *
R {A)-ROW ADDRESS *
1% CALL ROV *
HE EXIT: (AY=BCD VALUE OF KEY OF TERO *
e (EY=DESTROYED *
1¥ I FLAG BET IF N0 KEY *
3 <)"***%***i**f*‘-ﬁi***ﬁ*‘!—**{-!‘*****i—***{.{-**i******i***
ROWE El k3

IN Ay () PAET ROW

AMND 7 YGET 2 COLUMN BITS

. XOR 7 FACTIVE LW

ROW1RA RECA ISET CARRY

JR Cs ROWZQ SRETURN IF FOUND

DEC B $ADJUST 2CD COUNT

OR A PTEST FOR DONE

JR NZsROW1A 1TRY agalN

XOR & 1@ FOR NO REY

JR ROW3R $RETURN
ROW2A L.D YR FECD VALUE

DR A TEET ZERD VALUE OR NOMN-Q
ROW3Q RET TRETURN
3 *****{-{-ﬁ*****ﬁ-4):-i—*%i—{-*i-)i--)f-#f'!--)!'-{-**%-ll'Hé&*#**i*&****i*ﬁ*********
1% BCD T BINARY CONVERSION ROUTINE. CONVERTS e T *
% 5 DIGITS T RINARY (D 'O &5535), *
1 ¥ ENTRY: {(IX)=POINTER TO FIRST BCD DIGIT &
5 ® (B =# OF CHARACTERS *
s * CDE)=MALIMUM waLUE *
$ % CALL BCDBEIN *
R EXIT: {HL)Y =B INARY VALUE *
5% CARRY SET IF UNDER LIMmIT. RESET IF OVER *
5 ¥ OR ERJAL *
;******************%*******i*&iﬁ****§**§****i***********§
7
BCDRIS EQU 3

PUSH DE $SAVE LIMIT

LD Hla @ SIMNITIALIZE SUBTOTAL
BCD1@ ADD HL s HL ISUBTOTAL»Z

PUSH ML IGAVE ST*2

ADD Hi_ s HL SSUBRTOTAL =4

Fig. 10-2 cont’d. Common

:-80 APPLICATIONS PROGRAMS

117

160 29 23190 ADD HL s HL sSURTOTAL %8

116D DY 03200 POP DE sGET ST*2

16E 19 P3z10@ ADD HL s DE SSUBTOTAL*10

116F 1600 A3zz0@ LD D:0 3ZERO MS BYTE

1171 DDSEQQ@ 23238 LD Es (1IX) $GET BCD DIGIT

1174 DDZ3 B3240 INC IX sBUMP POINTER

1174 19 P3z5@ ADD HL» DE 3ADD IN LATEST DIGIT

1177 1@FQ Q32460 DJNZ BCD1@ sCONTINUE IF NOT DONE

79 D1 a3z7@ FOP DE $GET LIMIT

117A ES 3280 PUSH HL $SAVE VALUE

M7e B7 v3z90 OR A sCLEAR CARRY

117C ED52 23300 SBC HL s+ DE sTEST

M7E EN 23310 pOpP HL $GET VALUE

17F C9 n33:0 RET $RETURN
p333@ s
D334D SRR AR A EREEEEEERE R R RS EREREEREREEE R R R R R R R R ERRRERERS
@335@ s* BINARY To BCD CONVERSION SUBROUTINE. CONVERTS 16- =
DITZL@ 1% BIT BINARY VALUE T0O 5 BCD CHARACTERS. *
Q3370 s+ ENTRY: (HL)=BINARY VALUE *
QP378@ 3= {15)y=POINTER TO BUFFER *
B3385 1» CaLl. EBINBCD *
DIZFQ 1x EXIT: FIVE BCD DIGITS UNPACKED IN 5 BYTEE OF *
83400 BUFFER *
D3410 3% {IX) POINTS TO NEXT AVAILABLE *
D420 1R FEFEEEEREEREEER R R AR AR REREREFEFEERE SRR R R AR EEERES
2343@ 3

2180 @344Q BEINBCS E&U %

MBQ FDZ1A101 23450 D IY.BTARBL 1 TABLE OF CONSTANTS

2184 Q6FF @345@ BINGS .D B QFFH fINITIALIZE BCD DIGIT

A1BS FDSEDO @347@ L.D Es{1IY) 1GET FOWER OF 1@

4139 FD54@1 A3480 LD Dy (I¥+12 tMS BYTE

A18C CR7A @A3490@ a1T 7D 1TEST BIGN BIT

A18E C@ 3500 RET NZ sRETURN IF DONE

ALEF A4 2351@ BINLA NG B tEUMP COUNT(DIGIT)

a17@ Bev A35:20 0OR A $CLEAR CARRY

A191 EDSZ RA353 zBC HL s DE PSUBTRACT POWER

3193 30FA @3540 JR NC.BIN1Q $CONTINUE IF POS

2195 19 A35&60 ADD HLsDE $RESTORE RESIDUE

3196 DD7000 3570 D (IX)aR SETORE DIGIT

A199 DDZ3 @A35e0 INC Ix tBUMP POINTER

2198 FDz3 @359@ INC (4 1BUMP TABLE POINTER

219D FDZ3 @a3s00 INC 1Y $FAST & BYTES

@19F 18E3 A3s610 JR EIN@S s CONTINUE

1Al 1027 Q3620 BTARL DEFW 12000 sTABLE OF POWERS OF 10

R1A3 EB03 @35308 DEFW 1000

D1AS &400 23640 DEFW 120

BiaZ 8788 84228 BEEW 1°

Q1AR FFFF 03670 DEFW -1 SEND OF TABLE
D680 IR X EEEEEREXEEREERREREEEEERRERER R EEREEREEX KK KRR R FERRESR
A349@ % DELAY SUBROUTINE. DELAYS 1 MS*COUNT IN HL *
A370@ 3% ENTRY: {HL)=DELAY IN MILLISECONDS *
@37@5 s+ CALL DELAY *
DI710 X EREEEEEREEERRRREE RN R SRR FF R R EREE AR EERERERERERE RN ER

Area program listing.

118 Ez-80 PROJECTS

@3715 s

21AD 23720 DELAYS EQU B

@1AD L 1FFFF @3730 L.D DEs -1 $DECREMENT VALUE

D1EQ BbL4A @374@ DELOS L.D B+ B4AH sFIANGLE FACTOR

aiez 19 23750 ADD HL.s DE sDECREMENT HL COUNT

@1e3 D2 2376@ RET NC $RETURN IF DONE

D184 1OFE @a377@ DEL 1@ DJNZ DEL1@ s INNER DELAY

Bips 22 @e378@ NOP sWASTE TIME

A187 @0 @3782 NOP $WASTE TIME

Pie8 18F6 a379a JR DEL @5 sRETURN TO OUTER L
RISl T X PRSI S ETEE y y r E Y E E E E ETTE TEEE)
23810 3% SUBROUTINE TO BLINK DISPLAY FOR 5 SECONDS *
23815 ;= CALL BLINK *
P3BZDB 1 X EREEEEEREEREREEEREEE R AR E R AR LA EEEE L EREERERREEEEEE R RS
N3330 3

D1RA D384 BLINKS E&U $

QiBA 3EFF @335a@ L.D A QFFH SALL ON FOR FLAG

Q1BC Iz0FA8 a3gsad LD {BLINV)sA $EET BLINK FLAG

RIBF 2128813 @3g7@ LD HL 5000 53 SECONDS

A1CZ CDhigaa a3gen Call DELAY tDELAY

@1C3 AF a3z3zz LOR A 80 TO A

A Ce6 3ZOFAR L8844 t.D {BLINVYIA TRESET BLIMNK SLAG

Q1C9 C9 @3872 RET $RETURN
D200 T X EEFEFEE IR L EE SRR AR R R E R R LR SR AR R RS SRS B SR L LS B LT X
3710 3% SUBROUTINE TO BRANCH OUT TO FUNCTIONS. ¥
Q3IF20 s ENTRY: (HLIY»=POINTER TO RELATIVE BRANCH 7TARLE »
A3230 3= (DED=MIN# FOR INPUT s # OF LAST VALID FuUNO =
D3935 3% JP BRANCH *
A39350 = EXIT: BY JUMP TO BRANCH TABLE AFTER vaLID *
Q3960 % INPUT STRING *
DI377Q IR EFEEREE RS EE LR EFEE R LA EEEFERNE RS EEE A S EEE L LS EEFFEEEE R RS
D3980 s

D1CA B392@ BRANCS EQU ¥

AICA ES Q4000 PUSH HL. 1SAVE POINTER

@1ce 1c 4005 INC E TBUMP # OF [LAST Fiuni

@1CC DS 4010 PLUSH DE ISAVE FARAMETERS

@1CDh 10000 Q4222 BROS .D HL,@ s ZERDES

D102 z19808 Q4030 LD (LEDBUF) « HL $ZERD LED DIFLAY

@1D3 Z20AB8 B4040 \.D CLEDBUF+2)Y s HL TFOUR BYTES ToTalL

2106 CDR&RD R4@5@ BR1Q CALL INPUT SINPUT STRING

@QiD9? 79 Q4060 LD A SGET # INPUT

2i1DA 322288 Q4270 LD {(MOCHR)Y s A SSTORE # OF CHARS

@1DD Dt D49z POP DE TGQET MINs LASBT

@IDE 92 Q4094 SUR D STEST FOR MINIMUM

Q1DF CB7F 4098 BIT 7+ A sTEST IF LT MINIMUM

A1EL z@11 240298 JR NZsBRIS $G0O IF LT MINIMUM

QIE3 341303 04100 LD A { INBUF) 3GET FIRST CHAR

Q1ES 93 24120 SUR £ SACTUAL-LARGEST

QIE7 CB7F 24130 BIT 7TrA $TEST FOR MINUS

@1E9 2809 24140 JR ZsBR1S 160 IF NOT IN RANGE

@1EB D1 - Q4150 popR DE SRESTORE BR TaRBLE PNTR

@1EC ZA1308 24160 LD HL s (INBUF) SGET # TO L

QLEF 2600 Q4162 1-D Hs@ tH NOW IN HL

QiF1 29 24180 ADD HL s HL. s# TIMES =

Fig. 10-2 cont’d. Common

-80 APPLICATIONS PROGRAMS

119

@IFZ 19
Q1F3 E9
@1F4 D3

AFS CDhiEBe@@
RiF8 18D3

rgnbln]

AA0BA TOTAL

BECD1O
BECDBIN
BCDRIS
B IN@S
BINIO
BINBCD
BINBCS
BLINK
ELINKS
BLINY
5RE@5
BR1@
BR1S
BRANCH
SRANCS
aTARL
DAYS
DEL @5
DEL1@
DELAY
DELAYS
DISABL
GET1@
QET:Z@
GETCHR
GETCHS
HOURS
HUNDS
INBUF
INIT
INITD
INITL
INITS
INP@5
INP1O
INP11
INPUT

INPUTS
KEY1@

KEYZ@
KEY3@
KEYSCN
KEYSCS
LEDIQ
l.LEDz@
LEDBUF
LEDNO

D169
boLz
@165
2184
@18F
Ba15
@120
201B
B1EA
QA30F
@21Ch
@1Ds
DiF4
Q01E
QicA
B1al
200
1B0
Qaipa
018
@1AD
@z3ac
B1a9
210F
alnlriy
@109
peal
8R4
@813
P0oa3
a3y
@2z4
e
@@Dh4
QREA
BOFB
ralrafril-}
QacCF
BiaA
2150
2151
aBac
B11cC
aoee
aace
2808
@sab

04190
24200
04205
Q4210
@420
Q4250
ERRORS

23160
20290
23130
03460
P3510
20300
23440
0320
23840
00940
040:0
04050
P4205
00330
23970
034670
20870
23740
23770
20310
03720
20920
PI310
D340
20z60
22300
DOES0
20920
20950
00740
205460
00332
D043
21920
22070
@125
20250
21380
PZ750
22780
02790
00270
02480
01650
01740
20910
20930

BR15

3z6@

20290
23510
23540

00300
P421@
o03z0
ROFS2
R4zI0

24098

20330
@3450
npeed
33770
@3770
2370
Pa310
20732
pz3ze
@Bz350
21940
PRz60
paegs
P0710
Db Y]

D4E0
20500
POZ4D
V230
22000
02123
04050
20250
02560

2680
22770
22310
00270
01630
21690
00922
PO935

ADD
JP

PUSH
CALL
JR
END

@15660

2414@

23380

31060

@1130
Q21900
22830

Dze50

oYl

@2340Q

01720
21510
21480

HL.s DE sTABLE ADD+#x2
(HL) $JUMP QUT

DE

$SAVE LIMITS

BLINK sBLINK LEDS
BR@S5 $TRY AGAIN

23360

1700
@4100

(2120

064D

0z11@
@1565

33884

D410

@zz1@

22710 B2730

Q24030 24040
81590

Area program listing.

120

Ez-80 PROJECTS

21080 01170 21240 Q1310 01330
Q2740 Q1540 Q1610 D155

Q0970 24070

2550 02570 V2530 Q2670

LEDOUT 3095 01470
LEDPOS RE8RE @@935
MINS P80z BRSs8s 22879
NMIHAN Q@46 21230
NOCHR @823 00740
FROGR @BZ4 20970 Po46R
ROW QQ0F 20:30
ROWIB @158 Qr940 pzoe0
ROWZ® Q162 @3210 22950
ROW3@ @144 23230 Q3000
ROWS 2152 22700 20280
SECS @3 228902 20700
UPRTC OQQ&4E @110

Fig. 10-2 cont’d. Common Area program listing.

100 counts, SECS is incremented by one and HUNDS
is set to zero. If SECS equals 60, MINS is incre-
mented by one, SECS is reset to zero, and so forth. At
any time, DAYS, HOURS, MINS, SECS, and HUNDS
represent the elapsed time from the start of power
on. (However, it is up to the applications program to
reset all of these variables to zero initially; they have
garbage in them on power up.)

The LEDOUT portion of the NMI Interrupt Hand-
ler updates the LED display. It simply takes the
contents of the LEDBUF and outputs one of the four
digits every %oo of a second. After oo the entire dis-
play has been updated. To the eye it appears that the
entire display is on all of the time. Another function
that the LEDOUT routine performs is to blink the
display. If BLINV is on the display is zeroed for 3%i00
out of %% second. This appears as a blinking dis-
play. The last thing the NMI routine performs is to
switch back the cpu registers and execute a Return
from Non-maskable interrupt (RETN).

KEYBOARD SUBROUTINES

There are four subroutines associated with key-
board input, INPUT, GETCHR, KEYSCN, and ROW.
We'll examine them beginning with the most elemen-
tary, ROW.

The ROW subroutine takes a keyboard row address
of 80H (row 1), 40H (row 2), 20H (row 3), or 10H
(row 4), reads the keyboard row and finds a possible
column that has a key pressed. If a key is being
pressed, the initial value of 3, 6, 9, or 3 is decremented
to the proper value for the key (the BS, 0, and EN-

.TER keys become 1, 2, or 3). If no key is being
pressed, the returned value becomes 0.

The ROW subroutine is CALLed by the KEYSCN
subroutine. The KEYSCN subroutine returns the value
of the key that is being pressed or —1 for “BS” or —2
for “ENTER.” If no key is being pressed, the 2 flag

is set upon return. Normally, an application program
would not CALL. ROW, but might CALL KEYSCN
to see if any key is being pressed. KEYSCN CALLs
ROW for each of four rows to test for a key press.

The GETCHR subroutine CALLs KEYSCN. It
continues to CALL KEYSCN until a key is pressed.
GETCHR is truly a GET CHaRacter subroutine. After
a character is detected, GETCHR delays 10 millisec-
onds for key release. If it did not do this, it would
appear that the key was being pressed many times.

The main keyboard subroutine is INPUT, which
inputs a complete command line. A command line
is defined as a string of characters making up an
applications program command and terminated by an
“ENTER.” INPUT calls GETCHR, stores the char-
acter pressed, and continues until an ENTER is
pressed. Up to 16 characters are stored in INBUF by
input. Pressing the “BS” key deletes the last character
and writes over it with the next character. The num-
ber of characters input is returned in the C register.
INPUT is called by another subroutine BRANCH,
which inputs a line of characters and branches to a
processing routine for the function type.

CONVERSION SUBROUTINES

There are two conversion routines BCDBIN and
BINBCD. BCDBIN converts a string of bed digits,
typically a string in INBUF, to a binary value. Values
of up to 65535 can be converted. BINBCD works
the opposite way. A binary value in HL is converted
to a string of bed values, typically in the LEDBUF
for display.

DELAY SUBROUTINE

DELAY delays from 1 to 65,535 milliseconds. This is
simply a timing loop that takes 1 millisecond to exe-
cute, provided the clock signal to the Z-80 is exactly

-80 APPLICATIONS PROGRAMS

121

megahertz. The count in HL determines the delay
- DELAY = count X 1 millisecond. This blinks the
splay for 5 seconds.

BLINK SUBROUTINE

When an input error is encountered, it is conven-
1t to have feedback to the user. BLINK provides
is feature by setting the BLINV flag delaying 5
conds and resetting the flag. This blinks the display
r 5 seconds.

BRANCH SUBROUTINE

The BRANCH subroutine inputs a command string
* calling INPUT, puts the number of characters
put into NOCHR, and tests for a minimum num-
r input and for a valid “function.” The function is
bitrarily defined as the first digit input. By specify-
g a minimum and maximum function number and
minimum number of characters to be input, this
broutine provides error checking for command lines.
a valid string of characters has been input, then
e BRANCH subroutine adds 2 * function + (HL)
find a location for a branch. In fact, HL is set up
fore the jump to BRANCH to point to a table of
lative branches for the appropriate functions. An
ample of this is:

LD HL,TABLE

LD DE,0103H
JP BRANCH

;BRANCH TABLE ADDR
;MIN=1, 0-3 VALID
;GO TO BRANCH

\BLE JR FUNCO00 ;0 FUNCTION=START
TRAIN
JR FUNCO1 ;1 FUNCTION=STOP
TRAIN
JR FUNC02 ;2 FUNCTION=WHISTLE
JR FUNCO3 ;3 FUNCTION=COLLECT

TICKETS

If less than the minimum number of characters is
put or if an invalid function is input, then BRANCH
inks the display and waits for the next command
1e to be input. A typical command line might be:

“0123(ENTER)”

hich would start the train (function=0) and set
e speed at 123 miles per hour.

GENERAL USE OF SUBROUTINES

The whole idea behind the subroutines is that be-
re any applications programs are written, one knows
ere will have to be provision for inputting com-
ands, checking for validity, converting between bed
1d binary, and displaying data. The subroutines in
ile Common Area represent one approach to creating
tbroutines that will handle these functions.

Each subroutine is described in the listing in terms
of input parameters and output parameters. Certain
registers are set up with parameters defining the op-
eration and the subroutine is CALLed. On exit from
the subroutine, certain registers or variables contain
the results of the subroutine processing.

STRUCTURE OF THE APPLICATIONS
PROGRAMS

The reader is urged to examine the structure of the
applications programs in this section. Each program
generally CALLs INIT to move the program vari-
ables to RAM. BRANCH is then called to branch out
to an input line. Each separate function results in a
branch to a different processing routine for the func-
tion. The function processing may call other Common
Area subroutines, such as BINBCD or BCDBIN, may
investigate Common Area variables such as SECS or
NOCHR, or may use variables of its own.

RELOCATION OF PROGRAMS

All of the programs in this section are designed
to run in certain areas of EPROM. If the code for
the programs is moved to another area it will not
execute because of direct memory references such as
“JP LOCN,” which jumps to a specific location in
the applications program. Programs may be relocated
by the following procedure:

1. Establish the new starting address. Calculate the
difference between the old starting address and
new and label it BIAS.

2. Relocate all one-byte instructions by using the
same value for the byte.

3. Relocate all two-byte instructions by using same
values for the bytes.

4, If a three-byte instruction references a Common
Area subroutine, use the same values for the
bytes.

5. If a three-byte instruction references a RAM
variable, use the same values for the bytes.

6. If a three-byte instruction references a location
in the applications program (such as JP NEXT),

“go to Step 9.

7. If a four-byte instruction contains a reference to

an EPROM location (such as LD IX TABLE),

go to Step 9.

Continue with Step 2 until done.

9. (Add relocation bias.) Add BIAS to the address
portion of the instruction data. Go to Step 8.

®

Review of instruction addressing in Chapter 6 may
help to clarify which instruction addresses need to be

122

£z-80 PROJECTS

changed. In general, JPs to locations in the applica-
tions programs, or LDs of addresses or data from the
applications programs will need to have their ad-
dress references modified by adding BIAS.

USING SEVERAL APPLICATIONS
PROGRAMS AT ONCE

By relocating programs or by using the programs
as they are, it is possible to have several different pro-
grams in EPROM at one time, especially in the case
of a 2716 EPROM. Each program must, of course, be
in its own section of EPROM in this case.

Locations 1 and 2 specify the address for the start
of the application after power up; these locations are
the last two bytes of a “JP.” If these locations specify
a single applications program, then it will not be
possible to enter any other! The solution is as follows:
Locations 1 and 2 specify a short program at 200H
that “decodes” a single input character. This input
character is used to branch out to the proper applica-
tions program.

Suppose, for example, three applications programs
are resident in a 2758 EPROM, as shown in Fig. 10-3.
Their starting addresses are 220H, 2COH, and 360H.
The Microcomputer Educator is arbitrarily assigned
code 1, the Combination Lock code 2, and the Burglar
Alarm code 3. Locations 1 and 2 are programmed to
00H and 02H, respectively, to specify a start at loca-
tion 200H. At 200H a short decode program looks for
a 1, 2, or 3 entry and branches off to the proper ap-
plication program as shown in the code of Fig. 10-4.

The stack pointer must be initialized before any
CALL is made. GETCHR waits for a key to be
pressed. The assumption is that a 1, 2, or 3 key will
be pressed. Pressing a key returns to the “CP 1” code
and a comparison is made for “1,” “2,” or “3” with a

MACHINE CODE FOR

200H — 212H
2269 DAL CETCHR Edu
W2 @106 ORG
2 315008 DAL LD
A4 Chavaa ba1za CAalL
20136 P
Qe14@ JP
DALED wE
AL CACRRE JE
1agcieadl JP
Quaa END

AQ02@ TOTAL EFRI

GETCHE Q0Q7

DEC|0MA|. HSX E=———2 LOCATION 1 = 00H
LOCATION 2 = Q2H
COMMON
AREA
PROGRAM
"DECODE~
- | e
544 220 MICROCOMPUTER AT 200H
EDUCATOR
1 200 PROGRAM AREA
COMBINATION LOCK
PROGRAM AREA
864 360
BURGLAR ALARM
PROGRAM AREA
1023 3FF LIMIT OF 2758
1024 400
2047 7FF LIMIT OF 2716
2048 800

Fig. 10-3. Multiple applications programs.

branch out to the proper application program. Note
that any key other than “1” or “2” results in trans-
ferring control to the Burglar Alarm program. Once
one of the applications programs is entered, it has
complete control and another cannot be entered ex-
cept by a power down and restart to return to the
decode program at 200H.

This scheme may be used for any number of appli-
cations programs at any number of different areas
by adding a “CP N” with a “JP Z,XXX” for each ap-
plications program.

A9H tCOMMON AREA
ZO0H 1START OF EPROM

SP sy BSOH TINITIALIZE SF
GETCHR 1GET ONE CHARACTER
1 115 THIS 107

71 270H 150 IF MICRG. ED.
o 11D THIG 207

7+ 2COH 130 IF COMBO. LOCK
2460H TMUST DE SURGLAR

Fig. 10-4. DECODE program for multiple applications.

:Z-80 APPLICATIONS PROGRAMS

123

EXTERNAL AC OR DC
VOLTAGE SOURCE

CONTACTS RATED J
v AT 1 AMPERE
cC

FROM NC

EZ-80 { :COM

LLONO EXTERNAL
: DEVICE
1N4002 4
ooe £ sovee
OUT 1 — OUT 6 el " 12.mA CURRENT

Fig. 10-5. Relay control of external devices,

APPLICATIONS HARDWARE DEVICES

Some applications programs call for control of ex-
ernal devices such as solenoids, others call for input
if external data, and other require audio output. We
vill look at some suggested approaches to accom-
lishing these functions.

Fig. 10-5 shows a method for controlling external
levices using a sensitive miniature relay. The par-
icular one used here is Radio Shack No. 275-004 or
'quivalent. If this relay cannot be found, then another
vith similar specifications should be obtained. Look

BOTTOM VIEW
OF CONNECTIONS
NIRE-WRAP |'— ________ ': Vee
NIRE pra
\/ 2N i BUS
/
p [}
ouT 1— 4 1 DIODE :
6 !
[}
S

2szme z==s T0

NNy S
e S o EXTERNAL

~=

DEVICE
rooomooes y
N, com i BOTTOM VIEW
| LEAD | OF RELAY LEADS
; |
|
| |
coiL
Lo LEADS\“‘:/
| :
|
\;0 N v o7 wores
[LEAD LEAD 1 =z=== INSULATED WIRE OR
S 4 LEAD WITH INSULATING

$ = SOLDER CONNECTION TUBING
KEEP ALL EXTERNAL LEADS (COM.NO) AWAY
FROM OTHER CIRCUITRY: MAKE CERTAIN THEY
ARE WELL INSULATED

Fig. 10-6. Relay circuitry construction.

NC

£_Com T0
NO EXTERNAL

1
|
|
l
i]
| : CIRCUITRY
: ;
!) 4
Voo — ! T HEAVY-
i | DUTY RELAY
r'y 80 |
RELAY 1
0T 1 — ——3 | oo+
0UT 6 | EXTERNAL

_________ ——- POWER SUPPLY
Fig. 10-7. Driving heavy loads.

fora 6-V (orless) dc relay (operates with 6 Vdc) with
current less than 30 milliamperes. A relay requiring
more than 30 milliamperes may burn out the 74368
driver. The Radio Shack relay will “pull in” with 5
volts de—this may not always be true with another
relay. Another important point: The contacts with
this device are rated at 1 ampere at 125 volts ac. This
means that the relay will control up to 125 watts,
equivalent to a 125-watt bulb. The diode prevents
the back voltage associated with inductive loads from
damaging the 74368. If this relay is used to control
high voltages, be certain to isolate the high voltage
from the microcomputer circuitry. Do not attempt to
overload the relay with air conditioners or milling
machines! A suggested physical layout for the relay
is shown in Fig. 10-6.

The applications that use such a device are: the
Combination Lock (Chapter 12) to control a solenoid
for a door or other latch, the Morse Code Sender
(Chapter 15) to interface to an existing keyer, the
Telephone Dialer (Chapter 16) to interface to the
phone lines, and the Timer (Chapter 18) that con-
trols up to six external devices.

If a higher-power device must be controlled, then
this relay may be used to control yet another relay
as shown in Fig. 10-7, and the process can be re-
peated until your EZ-80 is controlling the output of
Hoover Dam. Remember, do not overload the con-

Vee
GJ 18] 7]
250 puF, 6V
ouT 1 — s
ouT 3 LM386
10K 8-Q

SPEAKER

1_2[

Fig. 10-8. Audio amplifier.

124

EZ-80 PROJECT!

SOMEWHAT
HEAVIER WIRE
4-CONTACT /
TERMINAL STRIP TO GROUND
ETCH

T0 Ve

TOOUT1 —)
0uT 6
10K MINIATURE P /

POTENTIOMETER

(BOTTOM VIEW) 4
NOTES: MINATURE
WW = WIRE-WRAP WIRE SPEARER

S = SOLDER CONNECTIONS

Fig. 10-9. Audio amplifier construction.

tacts and keep high voltage well isolated from other
circuitry!

Some of the applications call for an audio output.
The Burglar Alarm (Chapter 13) uses an audio
signal to signal a broken contact, the Morse Code
Generator (Chapter 14) and Sender (Chapter 15)
create Morse Code audio, and the Music Synthesizer
(Chapter 19), of course, requires audio. A simple
audio amplifier can be made from six components
as shown in Fig. 10-8.

The 1LM386 is a low-voltage audio amplifier on an
8-pin chip. It can be constructed along the lines of
Fig. 10-9. The 10-kilohm potentiometer should be
adjusted for the desired volume. The speaker should
be a miniature 8-ohm-impedance speaker.

_____________ .
EZ80 |
|
E2:80 i
GND | TRIGGERING
' SWITCH
NC i (BURGLAR
T0 IN1 — COM | ALARM, ETC.)
1 .
IN5 NO | EXTERNAL /
E -L " t 6-9 Vdc h——o0
6‘80) . i |(BATTERIES,ETC)
¢ 2 S
> 1
> |
L]
{
1

Fig. 10-10. Input using relays.

10 OF CONNECTIONS

.
|

S S | BOTTOM VIEW
|
INL-IN5 !
|

is's 10 £2.80
T0 £2:80 P e
GROUND o fo
$
EXTERNAL
6-9 Vdc
rf- === il
! |
: COM 1
\ LEAD :
|
[}
!
' coIL !
\;;‘/ LEADs\.{IV
i :
| |
& NO NC 1 NOTES:
 LEAD LEAD | ===== = INSULATED WIRE OR
e - LEAD WITH INSULATI!
BOTTOM VIEW TUBING
OF RELAY LEADS S = SOLDER CONNECTION ALL WIR

EXCEPT EXTERNAL TO COIL AR
WIRE-WRAP WIRE

Fig. 10-11. Relay input construction.

The Burglar Alarm (Chapter 13) requires an “on,
off” input on lines IN1-IN6. Because of the high noist
present on long lengths of line connected to TTL, :

REFERENCE Voo
VOLTAGE
8
ANALOG
INPUT 31_ e | T
VOLTAGE R1 VOLTAGE OUTPUT
5K o| COMPARATOR
+
R2
5K ll
NOTES:

» ANALOG INPUT VOLTAGE MAY BE 0-30 VOLTS DC

* REFERENCE VOLTAGE IS MAXIMUM SWING OF INPUT
VOLTAGE (.E.. 0-15 Vdc INPUT HAS 15-Vdc REFERENCE)
«TTL QUTPUT WILL BE A "1” WHEN INPUT VOLTAGE > Y2

REFERENCE OR A "0 WHEN INPUT < Yz REFERENCE

(A) CIRCUIT

+15V ——
INPUT OUTPUT .
VOLTAGE VOLTAGE -+
v - —— —(

(B) TYPICAL OPERATION

Fig. 10-12. Converting to TTL signals.

z-80 APPLICATIONS PROGRAMS

125

onnection cannot be made directly to the 74LS04.
ig. 10-10 shows the recommended interface for slow-
seed (several times per second) inputs that must
e detected by the EZ-80. The lengths of wires from
ae contacts to INI-IN5 should be kept short (maxi-
wwm of several feet). The voltage to drive the relays
an be derived from the +5-Vdc power supply of the
.Z-80. However, it may be necessary to use a separate
oltage source because of voltage drops in long runs
f wire, In this case any convenient spdt relay can be
sed in place of the Radio Shack relay, or a 9-volt
ower supply may be used instead of the +5 volts.
. suggested physical layout for the input devices is
hown in Fig. 10-11.

The same input scheme may be used for other ap-
plications requiring the detection of on/off signals
that are generated at locations which are remote from
the EZ-80.

The Frequency Counter/Tachometer application
requires an input on INI1. Here, again, it is important
to avoid noise on the input lines to prevent false
counts. Keep the input line from the signal as short
as possible. Shielding (shielded sheath of wire to
ground) will help. As described in Chapter 17 the
signal itself must be “TTL compatible.” A suggested
means for converting a periodic external world signal
into a TTL-compatible pulse is shown in the illustra-
tion of Fig. 10-12.

CHAPTER 11

Microcomputer Educator

This chapter describes the Microcomputer Edu-
cator application of the EZ-80. Unlike the other
applications the Microcomputer Educator does not
connect to the outside world to detect switch closures
or to output signals; its sole function is use as a train-
ing aid in assembly-language programming, The
Microcomputer Educator can be used to enter as-
sembly-language code into the RAM memory area, to
check that code, and to execute the small programs
that the code represents. In this way the EZ-80 user
can teach himself or herself assembly-language pro-
gramming by hand-assembling short sections of code,
keying the code into the EZ-80, and running the pro-
grams.

As an example, suppose that the user wants to write
a short program to add the numbers from 1 to 100
and display the result on the EZ-80 display. By refer-
ence to the instruction types and instruction formats
in Appendices D and E of this book; the program in
Fig. 11-1 may be generated.

This program accomplishes the following: Instruc-
tion number 1 loads the BC register pair with 100.
Instruction number 2 loads the HL register pair with
0; HL is used to hold the running total of the num-
bers from 1 to 100. Instructions 3 through 7 add 100,
99, 98, 97, . . ., 1 to the total in HL, decrease the
count in BC from 100, 99, 98, . . . , down to 1, and test
the count in BC to see when it reaches 0. If the count
has not reached 0, then the add of the next number
is performed. If the count reaches 0, then instruction
number 8 is executed. Instruction 9 uses a routine in
the EZ-80 Common Area (see Chapter 10) that con-
verts a binary value of 0 through 9999 in HL to a
“binary-coded decimal” equivalent for display on the
LEDs, which can only display decimal values. The
value in HL representing the total of the numbers
from 100 to 1 is put into the LED display buffer by
the routine (instruction 8 loads the IX register with
the address of the display buffer). The last instruc-
tion simply loops to itself at the end of the program.

126

The program above is written in convenient as-
sembly-language format, similar to the assembly-lan-
guage code used in the book. It must be converted to
machine-language format before it can be entered
into RAM and run. Using Appendix E the assembly-
language formats can be converted to machine lan-
guage. The location of the machine-language code
must be in RAM memory from about 830H to 85FH.
The first portion of RAM (800-82FH) is used for
variable storage (LED buffer, time, and so forth)
and the last portion of RAM (860-87FH) is used by
the EZ-80 stack. This provides about 30H (48) loca-
tions that can be used for simple programs. Fig. 11-2
is the equivalent program above, assembled to start
at 830H.

The program code is entered into RAM by running
the Microcomputer Educator and entering the data
on the keyboard shown in Fig. 11-3. At the end of
the entry, “0” starts execution and the answer of 5050
is displayed on the LED display. To reenter the Mi-
crocomputer Educator (in this case) the EZ-80 must
be powered down and then up, restarting the Micro-
computer Educator. When this is done, the contents of
RAM will be destroyed. Many simple routines of this
type can be implemented with the Microcomputer
Educator, and if the reader is interested in learning as-
sembly language for the Z-80 microprocessor he or
she is urged to experiment with this application using
the code in this book for study and emulation.

OPERATING INSTRUCTIONS

The Microcomputer Educator is programmed into
EPROM starting at 220H, as shown in Fig. 11-4.
Other applications programs may be programmed into
the EPROM if their locations do not conflict with
the Microcomputer Educator. Use the techniques de-
scribed in Chapter 10 to transfer control to the Micro-
computer Educator if other programs are coresident
in EPROM. If only the Microcomputer Educator is

TICROCOMPUTER EDUCATOR

127

INSTRUCTION
NUMBER

1 LD BCs 100Q ;100

2 LD HLs @ 1ZERO RESULT

3 LOOP ADD HLBC $ADD MEXT To REZULT

4 HEC = $COUNT DOWN

5 Ae SGET LS BYTE

[B SMERGE Mm% Y TE fa

7 NZ L DD a0 TF OCOUNT

8 14+ L.EDBUF—1

9. BINBCD

10 E

Fig. 11-1. Sample Microcomputer Educator program.
MACHINE
LANGUAGE CODE

pE283 1 20040 LEDRBUF EQU 508H
2015 PP@S@ BINBCD EGU 15H
DE30 20120 ORG E30H
2830 (015400 o011@ LD BC, 100 3100
2833 |212000 00120) HL: @ $ZERO RESULT
283& 29 PO13@ LOOP ADD HL.BC sADD NEXT 1o RESULT
2237 |oe 201 4@ DEC BC P COUNT DOWN
083a |79 o152 LD Al C SGET LS BYTE OF COUNT
2939 jea 20150 OR B tMERGE MS BYTE NT
A83A JZOFA Q@170 JR NZsLO0P 10 IF COUNT MOT
a83C [pDDIi@veg |oR180 LD 1%s LEDBUF- 1 PPOINT TO LED BWFFE
ag4@jcbisor 00190 CALL BINBCD FCOMNVERT TO BOD
2843 |18FE pezeR IR %
0000 Q010 END
2000@ TOTAL ERRORS
LOOP 9336
BINBCD 2215
LEDBUF 23028

Fig. 11-2. Machine language code.

esident, locations 1 and 2 of the EPROM will hold
20H and 02H, respectively.

The Microcomputer Educator accepts three inputs,
efined by a 0, 1, 2, or 3 (see Table 11-1). Entering
3nnnn” changes a pointer called the “current loca-
lon pointer” to nnnn, where nnnn is the value 0
hrough 2175, The location counter points to the loca-
ion to be displayed or into which data (instructions)
vill be entered.

Entering “2” displays the contents of the current
cation on the EZ-80 display. Entering “0100” fol-
>wed by “2,” for example, sets the current location
ounter to decimal 100 and then displays the contents
f location 100 (in the Common Area). Before dis-
lay, the current location counter is incremented by
ne, so that it points to the next location, in this case
01. Entering “2” again (or simply “ENTER”) dis-
lays the contents of 101, entering “2” again displays
he contents of 102, and so forth. Note that both ROM
nd RAM locations may be examined.

Entering “lnnn” enters nnn into the current loca-
tion and increments the current location pointer by
one. Entering “32096,” “123,” “150,” for example, sets
the current location pointer to RAM location 2096
and then stores 23 into location 2096 and 50 into loca-
tion 2097. Note that no data can be stored in EPROM!
This command can be used to enter machine code
into RAM for experimentation.

Another point that is extremely important to remem-
ber is the following: It is easy to cause erroneous re-
sults or “program bombing” by destroying data in the
variable area (800H-82FH) or the stack area (860H
and up), so do not change these locations unless you
are aware of the consequences!

Entering “0” starts execution at the current loca-
tion. Typically all machine code will be entered by
using “1” commands, the current location pointer will
be reset to start at the beginning of the entered pro-
gram, and a “0” will then start execution, as shown
in Fig. 11-3.

EZ-80 PROJECTS

COMMAND STRINGS

32096

Fig. 11-3. Entering a simple program.

COMMENT

SET LOCATION COUNTER = 830H

SET LOCATION COUNTER = 830H
START EXECUTION

DECIMAL HEX
0 0

E=——————= LOCATION1 = 20H
LOCATION 2 = 02H
COMMON

AREA
PROGRAM
(SEE CHAPTER 10)

511 1FF
512 200
544 220

MICROCOMPUTER
EDUCATOR PROGRAM AREA

1023 3FF
1024 400

LIMIT OF 2758

.

[////ZZ} UNPROGRAMMED AREA
Fig. 11-4. Microcomputer Educator memory mapping.

2047 TFF
2048 300

LIMIT OF 2716

2220
022
' Pd]
0223
0226
Az229
0zzC
@2zF
@232
@az35
2238
@238
@23E
D240
D242
@z44

318008
21A402
212300
ChR300
210000
220808
220008
21302
110300
C31E00
1806

1808

1831

184E

0246
@249

2A2408
E®?

ava99
29979
10000
10010
12022
10030
10040
12050
10060
10078
10080
10090
10100
10110
12120
10130
12140
12150
10160
10170
10180
12170
10200
10210
10220
10230
12240
10258
10260
10278
10280

*.IBT OFF
*L.IST ON
R R R R R R T e R Y)
3 MICROCOMPUTER EDUCATOR *
3 20-05 *

3 9636 3 3 2 I 36 e I I W I NI WK I H K I I KNI NI I W NI TN

e

ORG 220H SNEXT EPROM AREA
MICRO EQU $ $START OF MICR EDUC
LD 8P+ 880H SINITIALIZE STACK
L.D HL s PDATA $START OF RAM DATA
LD BCs PDATAS $SIZE OF DATA
CALL INIT $INITIALIZE
MICR?@ LD HL+@ $ZERO HL
LD (LEDBUF) s HL $ZERO LEFT DIGITS
LD (LEDBUF+2) s HL. $ZERO RIGHT DIGITS
LD HL s MICRT SFUNCTION TABLE ADDR
LD DE . B003H $@=MINIMUM, -3 VALID
JP BRANCH $BRANCH QUT
MICRT JR MICRQO $@=START EXECUTION
JR MICR1@ 51=5ET DATA
JR MICRZ@ $2=DISPLAY DATA
JR MICR30 $3=8SET LOCN COUNTER

sMICROGBD. START EXECUTION FROM CURRENT LOCATION.

MICRB2 LD
JP

HL» (PNTR)
(HL)

$GET CURRENT LOCATION
sJUMP QUT

MICR1@®.5ET LOCATION TO SPECIFIED DATA

s us um

Fig. 11-5. Microcomputer Educator

MICROCOMPUTER EDUCATOR

129

0244
024D
0Z4E
0251
8255
0258
0259
225A
025D
025F
0262
0264
0268
0268
026E
026F
0271
0274
8276
0279
0274
027D

@zZ7F
azez
0283
0284
2286
228A
828D
0290
0z9z

8294
@297
2Z9A
229D
QZ9F
B2A2

2A4
a2A4
DzAb

o3
o824
2826
oooe

112001
AF
3224608
DD211408
3A2308
47

25
CD1200
3805
chipeo
18C8
DD2A2408
DD750@
JA2608
B7
2805
DD7401
1886
2AZ2408
23
222408
18AD

2A2408
7E

&F

2600
DDz107@8
CD1500
ChoCon
28FB
18EZ2

212408
222408
118008
3E@1
322608
18AD

Uil
20

10290
10300
18310
10320
10330
10340
18350
10360
10370
10380
10390
10400
10410
18420
10430
12440
18450
10460
10470
10480
10490
10500
18510
10529
10530
10540
10550
105460
10570
10580
1@590
10600
104610
10620
10630
104640
108650
18660
10670
104680
1046496
18700
10710
18720
10730
10740
10750
10760
10770
10780
10798
10800
10810
10820

20002 TOTAL ERRORS

$MAX IMUM

$ZERO FLAG

$SET ONE RYTE

5START OF DATA

$GET # OF CHARS INPUT
SMOVE TO B

$ADJUST FOR FUNCTION CODE
s CONVERT

3160 IF OK

SOVER LIMIT-BLINK

560 FOR NEXT FUNCTION
$GET CURRENT L.OCATION
$STORE VALUE

SGET 1/2 BYTE FLAG
$TEST

$GO IF 1 BYTE

$TWO BYTES

$DON’T BUMP LOCATION
$GET CURRENT LOCATION
SBUMP BY. 1

$STORE

5GET NEXT COMMAND

CURRENT LOCATION

CONTENTS

IN L

SNOW IN HL

sLED BUFFER

s CONVERT AND DISPLAY
$TEST REY PUSH
5G0 IF NONE

$6G0 TO UPDATE

SGET
SGET
SNOW

SLOCATION COUNTER LOCN
$TO ITSELF!

s RAM+1

SONE TO A

$SET TWO-BYTE FLAG

3G0 TO STORE

$START OF PROGRAM RAM
5 (PNTR)

;s (MFLG)
PROGRAMMED %% %% % % % %
$SIZE

sLOCATION OF (PNTR)
sLOCATION OF MFL.G

MICRi® LD DE» 254
XOR A
L.D (MFLG) s A
MICR11 LD IXs INBUF+1
.D As (NOCHR)
L.D By A
DEC B
CALL BCDBIN
JR CoMICR1Z
CALL . BLINK
JR MICR9Q
MICR12 LD IXs (PNTR)
LD (IX)sh
L.D Ay (MFL.G)
OR A
JR Z+MICR13
L.D (IX+1)sH
JR MICR9Q
MICR13 LD HLs (PNTR)
INC HL.
L.D (PNTR) s HL.
JR MICR90
Al
$MICRZD.DISPLAY CURRENT LOCATION.
MICRZO LD HL.» (PNTR)
LD As (HL)
L.D LA
L.D H@
L.D IXs LEDBUF~1
CALL BINBCD
MICR25 CALL KEYSCN
JR Z+MICR25
JR MICR13
k]
SMICR3@.SET LOCATION COUNTER.
h
MICR3@ LD HL. s PNTR
L.D (PNTR) s HL
LD DE » BB8OH
LD Asl
L.D (MFLG)s A
JR MICR11
k]
sDATA AREA
PDATA EQU :
DEFW]
DEFB 7]
sexnkex¥¥END OF LOCATIONS TO BE
- PDATAS EQU #~PDATA
PNTR EQU PROGR
MFLG EQU PNTR+2
END

program listing.

130

Ez-80 PROJECTS

Table 11-1. Microcomputer Educator Commands

Command Description
OE Start execution at location defined by cur-
rent location counter.
1nnnE Enter data nnn (0-255) into current loca-

tion counter. Then increment location
counter by one.

2E Display data at current location and in-
crement location counter by one. Pressing
E again displays next location.

3nnnnE Set location counter to nnnnn (0 to 2175).

E = “ENTER”

The “default” start of the location pointer is 0. No
check is made for altering the location pointer.

THEORY OF OPERATION

Refer to Fig. 11-5. The first part of the program
initializes the stack and CALLs INIT to move the
RAM data variables to RAM. A JP to BRANCH is
then made to get the next command. The 0, 1, 2, and

3 commands are processed at MICR00, MICRI10,
MICR20, and MICR30, respectively.

MICROO simply jumps out to the location pointed
to by PNTR, the current location pointer. MICR10
converts the input value to binary (CALL BCDBIN).
If the value is less than 256, it is stored in the current
location and PNTR is incremented by 1; if the value
is greater than 255, the LED display blinks to denote
an error. MICR20 displays the contents of the current
location and increments PNTR by one. The contents
is displayed until the next key is pushed (CALL
KEYSCN). MICR30 stores the value input into PNTR
instead of the current location.

PNTR is a two-byte variable representing the cur-
rent location. MFLG is a one-byte variable that de-
notes a one-byte store (0) or two-byte store (1). One
byte is stored in the case of a “1” command, while
two bytes are stored in the case of a “3” command, as
the current location pointer may be a value up to

2175.

CHAPTER 12

Combination Lock

This chapter describes the Combination Lock of DEC:)MAL “Sx E=————————] LOCATION 1 = COH
the EZ-80. Up to six outputs may be controlled by LOCATION 2 = 02H
this application. Each output may control a lock sole- COA%'E‘,?"
noid or other action. A code sequence of digits is PROGRAM
defined. For example, the code may be the (Fibo- » (SEE CHAPTER 10)
nacci) series: 0112358. When this code is properly g}% %(F)(F)

entered, the selected output energizes for 5 seconds.
If the code is not entered properly, the display will

. S . 704 260 | COMBINATION LOCK
blink. As the number of digits is of variable length, pROGRAh? T\REA
the result is a coded sequence that cannot be broken
in a reasonable time, making this an ideal application %g%i i(F]E LIMIT OF 2758

for combination locks.

OPERATING INSTRUCTIONS

The Combination Lock is programmed into EPROM
starting at 2COH, as shown in Fig. 12-1. Other applica-
tions programs may be programmed into the EPROM
if their locations do not conflict with the Combination
Lock. Use the techniques in Chapter 10 to transfer

control to the Combination Lock if other programs 2047 I

are coresident in EPROM. If only the Combination 2048 800 LIMIT OF 2716
Lock is resident, locations 1 and 2 of the EPROM i

will hold a COH and 02H, respectively. ZZZZZ1 UNPROGRAMMED AREA

The default code in EPROM is defined to be 11235.
This code is used for all outputs directly upon power
up, which occurs for initial start, manual restart, or
power failure restart. A new code may be defined by 0UT] ——— SFE F'GS: L oo EXTERNAL
keyboard input at any time. An alternative way to 1058 106 GIRCUIT 1
define a new code is to change the CODEP table in

Fig. 12-1. Combination Lock memory mapping.

T2 ———

|
|
l
i }
Table 12-1. Combination Lock Commands oUT3 —» :
|
. |
Command Description ouT 4 - !
OmmmmnnnnnE Change the code from mmmm to !
nnnnn. mmmm must be current code. ouTS
nnnnn may be any string of digits for SEE FI
new code. wrg —— I poosooc KM
1mnnnnkE Energize output M (1-6). nnnn must
be current code.]
E = "ENTER"” Fig. 12-2. Combination Lock relay outputs.

131

132

Ez-80 PROJECTS

22C0

2C0o
dzCo
22C3

2Cé
a:zC9
@azcc
QzCF
@zbz
QzD3
PzD8
azDe
@ZDE
QZED

PIEZ
PZE6

DZED
RZEC
QZEF
0ZFQ
AZF 1
zFz
AIFS
DIF9
DIFC
QZFF
2301
2303
2305

@a3a7
230A
23ac

318008
215983
@12600
Ch@a300
210000
220808
220008
21DEQZ
1191@3
C31EQQ
18@2

1825

Dhz114@8
CD3E0@3

342308
212408
96

3D

47
322408
FDZ12508
DD7ERQ
FD772@
DD2z3
FDZ3
LOF 4
18G5

3A1408
FE@7
F25303

@3aF B7

03108
@31z
@316
8319
P31C

2841
DDz115@8
CD3e@3
3AZ308
Doz

D205
29999
10000
10010
10020
10030
10040
10050
12060
10070
10030
12090
10100
10110
10120
10130
10140
10150
10160
10170
12130
12190
10200
10210
10220
10230
10240
10250
19260
12270
10230
12250
10300
1031
10320
12330
10340
12350
10350
12370
12330
12390
10400
10410
10420
10430
10440

10450
104460

184701
12480
10490
12520
18510

*LIST OFF
*L.IST ON

TEREREEEEREEERREEEREEXERRT IR RN NN NN, EN
COMBINATION LOCK

3 ¥

3% po-21

FRHENFXREERFREEEREEEE XTI EREEEEEEERREXEEEERRE

.
3

ORG 2COH
COMBO EquU %
LD SPs &8@aH
L.D HL.» CODEP
LD BCs CODEL
CAaLL INIT
ComMes® LD HL. @
LD {LEDBUF) +HL
LD (LEDBUF+2) s HL
LD HL s COMBT
LD DE.@301H
JP ERANCH
COMBT JR COMEQA
JR COMBE1@

TS

PCOMBR@. REDEFINMNE THE LOCK

“n

CoMER@ LD
Call

IXs IMNBUF+1
COMCMP

s

SKEY MATCHES HERE

LD As (NOCHR)

LD HLs CODES

SUR {HL)

DEC A

) By A

L.D (CODES) A

i.D IYs CODER
coMp@z LD A {LA)

LD TIY)IaA

ING Ix

INCG IY

DJNZ SOMBAZ

JR COMBI@
sCOMEL1IQ. ENABLE OUTPUT M.
COMELI@ LD A { INBUF+1)

CP 7

JP Ps COMCM3

OR A

JR 2 COMCM3

LD IXs INBUF+2Z

CaLL COMCMP

LD Ay (NOCHR)

SUB =

CODE

*
*

SNEXT EPROM AREA
$START OF COMB LOCK
SINITIALIZE STACK
$START OF RAM DATA
sSIZE OF DATA
SINITIALIZE

sZERO HL

$ZERO LEFT DIGITS
3ZERO RIGHT DIGITE
SFUNCTION TABLE ADDR
$3 MINIMUM,@~-1 VALID
sERANCH OUT
1@=REDEF INE

P 1=ENABLE

$FOINT TO
$ COMPARE

INPUT CODE

SGET # OF
IPOINT TO
iHOIN NEW
t# IN NEW
1SETUP FOR
13TORE
1BTART OF RAM REY
saET NEW DIGQITS
SETORE IN RAM
sBUME DIGIT ®“NTR
TEUMP RAM PNTR
sCONTINUE TIL
SGET MEXT COMMAND

CHARS INPUT
CODE LENGTH
KEY+1

KEY

STORE

ALL

IGET N

$TEST FOR 1-6
IERRORy GT &
$TEST FOR @

160 IF ZERO
$START OF KEY

s COMPARE

sGET # INPUT
$FIND # IN CODE

Fig. 12.3, Combination Lock

OMBINATION LOCK

133

iPROM. The first digit is the number of digits in
he code string. The sequence may be as long as de-
ired (within limits of the input buffer).

There are two commands that may be input from
he keyboard, “0” or “1” (see Table 12-1). Entering
Ommmmnnnnn” changes the code sequence from
he EPROM value of “mmm” to the new value of
nnnnn.” “mmmm” must be the current code sequence,

nd the new code sequence of “nnnnn” may be any

quence is input, the display will blink for 5 seconds.

Entering “lmnnnnn” energizes output m if the en-
tered code sequence “nnnnn” matches the current
code. M may be 1-6, corresponding to OUT1-OUTS6.
Output m will be on for 5 seconds; this duration may
be changed if locations “TIME+1” and “TIME+2”
are changed to a value of other than 5000 (location
TIME+1 holds the least significant byte of the value,
while TIME+2 holds the most significant byte of the

ength. If the incorrect value of the current code se- value).
A31E 47 10520 LD BsA s# IN CURRENT CODE
A31F 3Az408 12530 LD As (CODES)
a3zz 20 10540 sue B $TEST FOR EQUAL
A3=23 ZOZE 10550 JR NZs COMCM3 $G0 IF NOT EQUAL
12562
1257@ 3KEY MATCHES HERE
10580 3 .
A3:5 3A1408 10590 LD As (INBUF+1) $GET N
D328 47 10600 LD ByA s TRANSFER TO B
A3z9 3E40 10610 LD As 40H 5BIT FOR OUTPUT LINE
2328 OF 10620 COMB1Z RRCA SALIGN BIT
@3zC 10FD 124630 DINZ coMelz 1LOOP TIL ALIGNED
A3ZE D30l 105640 ouT {(1)sA $ENABLE OUTPUT LINE
DI3@ 218813 12650 TIME LD HL s+ 5000 35 SECONDS
@333 CDh1300 10660 CALL DELAY sDELAY
AZ3& AF 10670 XOR A $ZERO A
@337 D381 104680 QuUT (1)sA sDISABLE QDUTPUT LINE
P339 1891 104690 JR COMBT0 $GET NEXT COMMAND
103702 s
1071@ :COMPARE SR. COMPARES TWO STRINGS
18722 3
A33B FDZ2IZE@8 1@73@ COMCMP LD IY:CODER 1START OF RAM CODE
A33F 3A2408 12740 I.D Ay {CODES) $LENGTH OF CODE
B34z 47 18750 LD BaA $ TRANSFER T B
@343 DD7EQQ 1@76@ COMCML LD As (IX) s INPUT CODE
@344 FDEEGO 18770 cP {1Y? 1 COMPARE CODEG
B349 2007 12720 JR MNZs COMCMZ G0 IF NOT EaUAL
@348 DDZ3 1@792 INC X sBUMP INPUT PNTR
P34D FDZ3 10800 INC Iy sBUMP RAM PNTR
@A34F 1@FZ 1281Q DJINZ COMCMI sCONTINUE TIL ALL CHRD
351 C9 1A8:@ RET $RETURN
@352 EI 19832 COMCMZ POP HL $RESET STACK
P353 CDIRRA 12840@ COMCM3 CALL BLINK PBLINK DISPLAY
akxne C3CCOz 19850 JP COMESR 3TRY AGAIN
12860 @
10878 :iDATA AREA
1@28@ 3
@359 1989@ CODEP Eay k3 sSTART OF PROGRAM RAM
P359 @5 10720 DEFE 5 $CODE 5IZE
235A Q1 1@91a DEFE 1 sCODE=11235
2358 Q1 107:z@ DEFR 1
P3sc az 18930 DEFBE P
@35D @3 10940 DEFE 3
QA3S5E @5 18950 DEFR pal
10960 3xxxxx%xxEND OF LOCATIONS TO BE PROGRAMED**#%x%%¥%x%
aeas6 10970 CODEL EaU $-CODER $S5IZE
284 10980 CODES E&U PROGR SLOCATION OF (CODES)
ril=pedst 1099@ CODER EaU CODES+1 sSTART OF KEY
alrlvls] 11000 EMD

22002 TOTAL ERRORS

program listing.

134

Ez-80 PROJECTS

APPLICATIONS HARDWARE

The basic applications hardware required for this
application is one relay for every output. The relays
are physically small (1% X % X l-inch) and may be
mounted on the applications area of the wire-wrapped
E-80 or on a separate board. The connections required
for up to six outputs on OUTI1 through OUT6 are
shown in Fig. 12-2. Each relay uses a diode to reduce
the reverse voltage developed as the relay coil is en-
ergized. The contacts of the relay will handle an
ampere, so be careful not to attach to a heavy load on
the relay contacts. It may be necessary to drive an-
other relay with the relay. One way of doing this is
shown in Fig. 10-7.

THEORY OF OPERATION

The Combination Lock Program (Fig. 12-3) is
made up of four parts, initialization, “0” command
processing, “1” command processing, and a compare
subroutine.

Initialization (COMBO) initializes the stack and
then moves the variables to RAM (CALL INIT). The
BRANCH routine is then entered to input the next
command. If the command is a “0,” the code at
COMBO00 is entered. The compare subroutine is

CALLed to compare the code sequence to the current
code sequence. If the codes compare, the new code is
substituted for the old in RAM and a jump is made to
COMB90 to get the next command. (If the codes do
not compare, the display blinks.) If the command
input is a “1” and the input code matches the current
code, the code at COMBI0 is entered. The output
number is converted to the proper one bit to be sent
to the 8255, resulting in an output on PB5-PB0
(OUT1-0UTS6). This output is enabled for 5 seconds,
after which it is reset and a jump made to COMB90
to get the next command.

Subroutine COMCMP is a general-purpose subrou-
tine that compares two strings of digits, one string
located in RAM, and the other the input string, If
each digit of the two strings does not compare, the
display is blinked for 5 seconds and a jump is made to
COMB90 for the next command. If the strings do
compare, a RET(urn) is made to the instruction after
the CALL is made.

The main variable in this application is the code
sequence itself. This sequence is moved from EPROM
to RAM during initialization. Any redefinition of the
code results in a new sequence being stored in the
RAM variable area. The first byte of the code se-
quence is always the number of bytes in the code
sequence to follow.

CHAPTER 13

Burglar Alarm

ROOM 1 ROOM 2

.‘\JNC

T~ NC

ROOM 4

ROOM 3

LINE 4

LINE 1

DECIMAL
0

51l
512

864

1023
1024

2047
2048

=N

T~ NC

ROOM 5

Y~

GROUND

LINE 5

LINE 3 LINE 2

Fig. 13-1. Burglar Alarm application.

HEX
0

1FF
200

360

3FF
400

TFF
800

COMMON

AREA
PROGRAM

(SEE CHAPTER 10)

_

BURGLAR ALARM
PROGRAM AREA

LOCATION 1 = 60H
LOCATION 2 = Q3H

LIMIT OF 2758

LIMIT OF 2716

UNPROGRAMMED AREA
Fig. 13-2. Burglar Alarm memory mapping.

135

This chapter describes the Burglar Alarm applica-
tion of the EZ-80. Up to five inputs are tested thou-
sands of times per second. The five inputs represent
either a normally open or normally closed switch or
set of switches that comprise a burglar alarm system.
The state of the inputs may be redefined at any time.
If input number 1 is normally closed, but must be
opened for some reason, input number 1 may be re-
defined as “open.” When the burglar alarm applica-
tion is active, an input that becomes “open” when it
should be closed or one that becomes “closed” when

SEEFIGS. | EXTERNAL POWER,
N - 101081011 PP RiceeR §
N2 -——— :
i
IN3 -—— |
i
Ny ~——— |
SEE FIGS. - EXTERNAL POWER.
10-10 & 10-11 e TRIGGER 5
IN5
Fig. 13-3. Burgtar Alarm relay inputs.
Table 13-1. Burglar Alarm Commands
Command Description
OnnkE Define state of input lines IN1-IN5 to
be nn, where nn is 0-31 (0-11111).
1E Start burglar alarm. Continuously check
state of input lines for match to defined
state. If different, display failing number,
output audio alarm, and turn on corre-
sponding output line.
E = "ENTER”
EXTERNAL
ouT 1— SEE FIG. el i
ouT 6 105 CIRCUIT

Fig. 13-4. Output line connections.

136 Ez-80 PROJECTS
20099 *L.18T OFF
B9999 *LIST ON
10000 ;***
10010 ;5 BURGLAR ALARM *
186z0 0004 *
12030 5***************.******************************
10040 3
2360 12850 ORG 360H SNEXT EPROM AREA
2360 10060 BURGLR EQU $ $START OF BURGLAR ALARM
03460 318008 10870 LD SP. 880K SINITIALIZE STACK
B363 21FAB3 12080 LD HL s PDATA $START OF RAM DATA
0346 B121020 128690 LD BCs PDATAS 3SIZE OF DATA
@349 CDR30O 10100 CALL INIT SINITIALIZE
@34C 210002 1011@ BURGY2 LD HL+@ 5@ TO HL
B3&6F 220808 10120 LD (LEDBUF) s HL. $ZERO FOR DISPLAY
B372 220A08 18130 L.D (LEDBUF+2) s HL $ZERC LS DIGITS
@375 7D 12131 LD Asl $ZERO A
2376 D301 10132 ouT (1)sA $INITIALIZE QUTPUTS
2378 218103 18140 LD HL+ BURGT sFUNCTION TABLE ADDR
@378 112100 12150 LD DEs 2@Q1H 5@ MINIMUMs@~1 VALID
@37E C31E00 10160 JP BRANCH 3 INPUT AND BRANCH
2381 180z 1017@ BURGT JR BURGOQ2 $@=DEF INE
@383 1820 10180 JR BURG10 5START
10192 3
10200 3BURGDBO. DEFINE STATES OF LINES
13210 3
03853 DDZ11408 10220 BURGOR LD IXs INBUF+1 $START OF INPUT
@389 3Az308 18230 LD As (NOCHR) i# OF INPUT CHARS
fa38C 47 10240 LD BsA $TRANSFER TO B
@38D @5 18250 DEC B i# OF CHARS TO CONVERT
@3BE CD1200 102460 CALL ECDEIN $ CONVERT
@#391 7D 108270 LD Ayl SGET #
2392 D&2@ 10280 SUR 32 3TEST FOR LT 32
B394 FACH3 10290 JP Ms BURGA1 5GO0 IF LT 32
8397 CDiRbO 10300 CALL BL INK SOVER LIMIT-BLINK
@324 18D 10310 JR BURG?0 5G0 FOR NEXT FUNCTION
e39C 7D 12328 BURGD1 LD AL 3GET N
239D @7 10330 RL.CA $ALIGN
039E @7 18340 RL.CA
@39F @7 12350 RL.CA
a3A0 322408 108360 LD (CODE) A $SAVE FOR TEST
@3A3 18C7 10370 JR BURG9Q 3GO FOR NEXT FUNCTION
10380
10390 ;BURGID.START ALARM
12400
B3AS DROZ 10410 BURGID 1IN As (Q2) $GET LINES
B3A7 E&FB 10420 AND arF8H SGET INPUT LINES ONLY
B3AT 47 10430 L.D BsA sNOW IN B
A3AA 3AZ408 12440 L.D As (CODE) $GET CODE
@3AD A8 12450 XOR B $TEST FOR EQUAL
B3AE 2014 1044640 JR NZsBURGL11 SNOT EQUAL
2380 2600 10461 LD H+2 $ZERO MSE
A3e2 3A0308 10462 LD Ar (SECS) $GET SECONDS
a3ps &F 104463 LD LsA $TRANSBFER TO HL
A3B46 DDZ10708 184464 L.D IXs LEDBUF~1 sLED DISPLAY BUFFER
23eA CD1508 184465 CALL. EINBCD sDISPLAY SOMETHING
A3BD ChHACOD 10470 CALL KEYSCN $TEST FOR KEY
R3C0. 28E3 10480 JR Z3PURGI® $G0 IF NONE
@3C2 18A8 10490 JR BURG?0Q SKEY PUSH-GO FOR COMMAND
@3C4 OF 10500 BURG11 RRCA $ALIGN
@a3cs aF 18510 RRCA
@3Cé6 4F 18520 LD CsA sSAVE FAILING BIT

Fig. 13-5. Burglar Alarm

BURGLAR ALARM

137

it should be open causes a blinking display of the
input that is incorrect, generation of an audio tone
on output line 6, and closure of the associated output
line 1 to 5.

Fig. 13-1 shows a typical application of this system.
There are five rooms involved, and they are connected
to input lines 1-5. Lines 1, 2, 3, and 5 represent nor-
mally closed inputs. Line 4 is normally open. If a
switch is broken in room 3 (metal foil on a window, or
other such switch), output line 3 goes high, a tone is
generated on output line 6 which is fed into a small
audio amplifier, and the number 3 flashes on the
EZ-80 LED display.

OPERATING INSTRUCTIONS

The Burglar Alarm is programmed into EPROM
starting at 360H, as shown in Fig. 13-2. Other appli-
cations programs may be programmed into the
EPROM if their locations do not conflict with the
Burglar Alarm. Use the techniques described in Chap-

ter 10 to transfer control to the Burglar Alarm if other
programs are to be coresident in EPROM. If only the
Burglar Alarm is resident, locations 1 and 2 of the
EPROM will hold a 60H and a 03H, respectively.

There are two commands that may be input from
the keyboard, “0” or “1” (see Table 13-1). Entering
“Onn” defines the state of the five input lines. Here
“nn” is a number from 0 to 31, representing the state
of input lines 1-5.

Entering “1” starts the burglar alarm. The program
takes the current definition of the five lines and com-
pares it to the instantaneous values of the five lines
tens of thousands of times per second. If no “0” input
to define the lines has occurred, the Burglar Alarm
program assumes that all five lines are normally open.

APPLICATIONS HARDWARE

The basic applications hardware required for this
application is five relay sets, one for each input line.
They are connected as shown in Fig. 13-3. When an

P200@ TOTAL ERRORS

@3C7 1607 10530 } LD Bs7 s# OF FAILING LINE
B3Ce 85 18540 BURGL1Z DEC B sBUMP #
@3CA CB3F 10550 SRL. A SGHIFT
P3CC 20FE 10560 JR NZsBURGI1Z GO IF NOT SHIFTED OUT
Q3CE 320808 12570 L.D (LEDBUF) s A $ZERO LEDBUF
P3D1 320908 10580 L.D (LEDBUF+1)sA
B3D4 320408 10590 L.D (LEDBUF+2) A
Q3Dn7 78 10600 L.D AR $GET # FOR DISPLAY
@3n8 320808 10610 L.D (LEDBUF+3)sA $STORE #
@3De. 3EFF 10620 LD As BFFH sAll. ON FOR BLINK
@3DD 3:0F08 10638 LD (BLINV)sA $SET BLINK FLAG
Q3EQ 79 184640 LD Al C SRESTORE FAILING BIT
@3E1 EEQL 12658 BURGLI3 XOR 1 3SET FOR ALARM
03E3 D301 10660 QUT (B1)sh $OUTPUT TO LINE & ALARM
Q3E5 210100 10676 LD HLs 1 sDELAY 1 M3
a3eg CDh1800 104680 CALL DEL.AY sDELAY
Q3ER F35 10690 PUSH AF ISAVE A
@3EC CDACLE 10700 Call. KEYSCN STEST FOR REYPUSH
@3EF E1 18702 POP HL SGET A
@3Fa 7C 10704 LD AsH sDON®T DISTURE CARRY
A3F1 28EE 10718 JR ZsBURG13 5GO IF NONE
Q3F3 AF 10721 XOR A 36 TO A
D3F4 3:0F08 1@7z22 LD (BLINV)sA SREGET BLINK
R3F7 C36C0O3 10730 JP BURGYD $GO TO INPUT

18740 3

18750 3DATA AREA

18760 3
Q3F A 10770 PDATA EQU % $START OF PROGRAM RAM
@3FA F8 12780 DEFR OF8H 5 CCODE) ~ALL. ON

10790 sx#%%x%¥END OF LOCATIONS TO BE PROGRAMED¥ %% %% % &% %
onal 18800 PDATAS EQU £-PDATA $81ZE
824 10810 CODE EQU PROGR 5LOCATION OF (CODE)
0200 10820 END

program listing.

138

EZ-80 PROJECTS

input becomes active, the corresponding output line
goes high. This line may be used to trigger an addi-
tional alarm associated with one of the five circuits,
driven by a relay or solenoid as shown in Fig. 13-4.
Output line 6 is used to generate an audio tone,
which may be fed into a small audio amplifier
which is mounted on the EZ-80 as shown in Figs. 10-8
and 10-9.

THEORY OF OPERATION

The Burglar Alarm application program (Fig.
13-5) is made up of three parts: the initialization
area (BURGLR), processing of the “0” com-
mand (BURGO00), and processing of the “1” command
(BURGI10).

The initialization portion initializes the stack and
then moves the variable (CODE) into the RAM area.
CODE is predefined to be all ones (all lines open).
A CALL is then made to the common area BRANCH
routine to input the next command.

The code at BURGO0O processes a “0” command.
The nn value is converted from keyboard BCD to
binary (BCDBIN). If the value is 0-31, it is saved
in variable CODE for comparison to the states of the
five input lines. If the value is not 0-31, the LED
display blinks to signal erroneous input.

The code at BURGIO starts the alarm. The five
input lines are read and compared to the CODE
value. If the values are identical, the inputs are read
again. If at any time the inputs do not equal the
CODE definition, the failing input is converted to a
digit of 1-5 and displayed on the LED display. The
blink flag (BLINV) is then set to blink the display.
The associated output line is then set to 1 and a
tone is output on line 6, This condition continues until
a key is pressed.

The sole variable in this program is CODE, used
to hold the definition of the input lines.

CHAPTER 14

Morse Code Generator

This chapter describes the Morse Code Generator
application of the EZ-80. This chapter and the next
one use some of the same coding. The generator gen-
erates a continuous stream of random Morse code
characters at user selectable rates from 1 to 99 words
per minute. The characters are “pseudo-random,”
that is, they are random, but repeatable from the
same point, to allow for verification of copied code
characters at a slower speed. Ten different sequences,
0-9, may be chosen. The characters are sent in eight-
letter groupings.

The output of the generator is a tone on the OUT6
line which can be fed into an external audio amplifier
or used with an “on-board” audio amplifier with a
small speaker.

DECIOMAL HEX e —— A 20H
LOCATION 2 = 02H
COMMON
AREA
PROGRAM
(SEE CHAPTER 10)
511 1FF
512 200
44 220
’ MORSE CODE
GENERATOR
PROGRAM AREA
{g%i iS(F) LIMIT OF 2758
w047 TFF

[[///2/Z] UNPROGRAMMED AREA
Fig. 14-1. Morse Code Generator memory mapping.

139

Table 14-1. Morse Code Generator Commands

Command Description
OnE Send random code characters A-Z, 0-9,
w2t and /" at speed currently
defined in 8-letter groups based on
‘'seed"” n.
1nnE Set speed of transmission to nn (0-99)
words per minute.
E = “"ENTER"

OPERATING INSTRUCTIONS

The generator is programmed into EPROM start-
ing at 220H, as shown in Fig. 14-1. The generator
takes up the majority of a 1K (2758) EPROM; other
programs could be used in the same 2716 EPROM.
Set locations 1 and 2 of the EPROM to 20H and 02H,
respectively, for an EPROM with only the generator
present.

The generator uses two commands as shown in
Table 14-1. The “On” command starts the generation
of Morse code characters. The sequence used is de-
fined by n, whose values are 0-9. Restarting the gen-
erator with the same value of n will result in the same

T0

EXTERNAL —]
AMPLIFIER

DOUBLE-ENDED ¥}
PHONO PLUG
ASSEMBLY

0UT 6
10 EZ-80
GROUND s S

:\ FEMALE PHONO JACK
MOUNTED TO EZ-80 CHASSIS

|
)
[}
[}
$ = SOLDER !
]

Fig. 14-2. Morse Code Generator external audio.

140

Ez-80 PROYECTS

sequence being generated for each restart. The speed
of transmission will be the speed specified by the user
for the “1” command. If no speed has been input, the
code will be sent at one word per minute. Pressing
any key stops the transmission.

DOT INTERVAL DASH INTERVAL

LON_ OFF, . ON OFF |
1 ' 1 i
E £ JUNITS 1UNIT
£ 3
- - 3 UNITS 3 UNITS
BETWEEN BETWEEN
CHARACTERS CHARACTERS
nCn ') i i "T"
©TUNTS
! BETWEEN !
L B ” "L " "A ” nc" "K " 1 WORDS) nc " HA " nTn

Fig. 14-3. Morse code intervals,

The “Inn” command allows the user to specify the
speed in steps of one word per minute. Limited input
checking for invalid characters is done, but extensive
checking is not performed to save space in EPROM.

APPLICATIONS HARDWARE

The basic applications hardware required for this
application is an audio amplifier chip and speaker for
output OUTS, connected as shown in Fig. 10-8 and
10-9. Alternatively, the output on OUT6 could be fed
into an external amplifier as shown in Fig, 14-2.

THEORY OF OPERATION

Morse code characters are standardized as shown
in Fig. 14-3. The length of a dot is one unit “on”
followed by one unit “off.” The length of a dash is
three units, followed by one unit off. The space be-
tween characters (such as the C and A in “CAT”) is
three units. The space between words (such as be-
tween “BLACK” and “CAT”) is seven units long.

All Morse characters are made up of dots, dashes,
and spaces, as shown in Fig. 14-4. The ones generated
here are alphabetic characters, numeric characters,
and period, comma, question mark, and slash. All
that a program must do to generate characters is to
turn an audio tone on or off for durations of one,
three, or seven units, as shown in Fig. 14-3. The rela-
tionship between words per minute and the “unit”
time of the dot is:

words/minute = dots per second X 2.4

making a one word per minute dot about 1.2 seconds
and a 99 word-per-minute dot about 12 milliseconds
(12/1000 second) for the “on” time. Fig. 14-4 is the
complete Morse code.

The Morse Code Generator is made up of several
parts (see Fig. 14-5). On the bottom level is the
TOGGLE subroutine which creates an audio tone
for a specified duration. The tone is created by turning
on OUT6 and then turning it off. The on/off toggle
is done about 1000 times per second, creating a 1000-
hertz tone on the output of OUTS. This toggle is done
continuously for a duration determined by a count in
HL. For each cycle, one count is subtracted from HL.
The count specified determines whether the tone will
be on for a dot interval or a dash interval, or whether
there will simply be a time delay (no tone) for a
dot, dash, or space interval.

The TONE subroutine CALLs the TOGGLE sub-
routine with two counts. The first (in HL) is the “on”
time count, and the second (in DE) is the off time
count. TONE is in turn called by the subroutines to
send a dot (MORST), a dash (MORSH), a character
space (MORSC), or a word space (MORSW). These-
routines simply pick up the right counts for on times
and off times for these functions. As the counts change
with speed, the counts are adjusted to the speed every
time the speed is changed by command “1.” The basic
unit time (ONE WPM), representing the length of a
dot for one word per minute is divided by the speed
to find 2 new DOT on time (DOTO) and adjusted to
give a three-unit and seven-unit value (DASHO,

WORDF).

CHARACTER CODE CHARACTER CODE
A _______ * mum 0 _______ L NN
B _______ -—ee | o mas mmm =
C _______ e mum ¢ 2 oo rum e mmm
D _______ - - e 3 _______ ¢ oo mm
E .] 4 . so 0o mm
| o mme 5 . [X XN
G —____ -— e e 6 _______ L KX XN
Ho . XX N 7 . LN _KXY¥]
| LX) 8 _______ L)
) . * omm mmm 9 — e
K ______ -— mum
L. ommes . _______ ® mmm ¢ mun ¢ mma
Mo —— e y mmme— o — ¢ W e
N . -_— . T ¢ mm wum oy
0 ____ - - — | ___ - e mmm o
P ® mmm mmm e
Q _______ L N
R _______ [N
S . se o
T .. —
U . ¢ o wm
V o oo ¢ mm
W o _____ ° mmm -
X - ¢ mmm
Y . -— ¢ mm amm

Fig. 14-4. Morse code characters.

VMORSE CODE GENERATOR

141

Bz220
02220
0220
0223
0226
0229
ezzC
022F
0z32
0235
2238
2238
023E
0240

0243
@244
0247
@24A
0248
@24C
024D
Q24E
0251
Q234
@255
@258
0259
025C
@Z5E
@25F
0261
0262
B263
02635
0266
0268
024C
02&6E
ez71
Q274
02746
az277
@az79

318008
21A903

‘210700

cholee
210000
220808
220A08
213E02
110101
C31E0Q
1803

C39902

AF
322408
3A1408
3C

c32C0Z
D1
210000
0605
19
10FD
ES

7¢
E&7E
4F
2600
DD212903
DDOY
DD4&01
DD4E@D
ceel
o)
3818
CDDBODZ

20099
9999
10000
10010
10020
10030
10040
10050
10060
10070
10080
10072
12100
10110
10120
18130
10140
10150
101460
18170
10180
10190
10200
10210
10220
10238
18240
10242
10244
1024646
18250
10260
10270
10280
10290
10300
12310
103z@
18330
1@340
10350
103355
10348
10370
12380
10390
10400
18410
10420
18430
10440
12450
10460

*
*

$START EPROM AREA
$START OF MORSE PROGRAM
SINITIALIZE STACK
$START OF RAM DATA
$SIZE OF DATA
SINITIALIZE

3@ TO HL

$ZERO FOR MS DISPLAY
$ZERO LS DIGITS
sFUNCTION TABLE ADDDR
$1 MINIMUMs@-1 VALID

s INPUT AND BRANCH
$@=8END RANDOM

$1=6ET SPEED(MUST BE LAST)

30

$INITIALIZE CHAR COUNT

$GET SEED

$FOR NON-ZERO MULTIPLY

3PUT IN MSE

sPUT IN L&B

$SAVE FOR NEXT RANDOM
$TEST FOR KEY DEPRESS
G0 IF KEY NOT PRESSED
SRESET STACK
$60 FOR NEXT COMMAND
$GET SEED
$GENERATE NEW RANDOM #

$SAVE FOR NEXT TIME
$GET MS BYTE

$GET @126

SNOW IN C

SNOW IN B

s CHARACTER TABLE ADDREGS

sPOINT TO CHAR
SGET # BITS

$GET CONFIGURATION
$SHIFT OUT BIT

3SAVE #s CONFIG
GO IF DASH

*.IST OFF
*.IST ON
$ 9k 3 96 96 I I I I I 6 I I I I W I I A K K I I I I W I I K WK KWW I WK K
H MORSE CODE GENERATOR
H a-03
IEZ 22T XTI EL LTI L LTI AL ELEL L L L L L LS L 2Lt L)
ORG 220H
MORSE EGQU $
LD SP, 8B80H
LD HL.s PDATA
LD BCs» PDATAS
CAL.L. INIT
MORS?@ LD HL.@
LD (LEDBUF) s HL
L.D (LEDBUF+2) s HL.
L.D HL.s MORTR
LD DEsQi0@1iH
JP BRANCH
MORTE JR MORS10
JP MORS20
*
sMORS1@.5END RANDOM CHARACTERS.
MORS1@® XOR A
L.D {MNUM)» A
LD As (INBUF+1)
INC A
L.D Hi A
L.D L.eA
PUSH HL
MORS1A CALL KEYSCN
JP ZsMORS1R
POP HL.
JP MORS%0
MORSIB POP DE
LD HL.s @
L.D B3
MORSIE ADD HL. s DE
DJNZ MORSI1E
PUSH HL.
L.D AsH
AND B7EH
L.D CrA
LD E.Q
L.D IXyMCHRT
ADD IXsBC
L.D By (IX+1)
LD Cr C(IX)
MORS511 RLC C
PUSH BC
JR CysMORB12
MORST

$SEND DOT

Fig. 14-5. Morse Code Generator program listing.

142

EZ-80 PROJECTS

@z7¢
oz7D
Q27F
azaz
2283
Q286
2288
az8A
@:=8D
@zer
0292
0294
@297

@299
@az29D
2zA0
AzAL
azAZ2
@2A5
azAasé
@zA7
22A8
B2AA
@zAD
22Ra
ezB3
@285
a:ze8
azB9
2zeR
2z2BC
@zZBF
@:2Cca
8zC1
@2C4
ez2C5
az2Cé
@azce
B2CA
8zCh

8ZD@
2zD3
@zD7
@2DA

Cl
10F5
212408
34
3A2408
E6@07
2005
CDF 402
18BF
CDE4@2
18BA
chboez
18E3

DDz11428

¢3zcaz
21C704
V600
1IFFFF
R7
ED42
13
F2B802
D5

El
222508
29

19
222708
29
222908
cazcoz

2A2708
EDSB2508

CDFADZ
ce

10470
10480
12482
10484
12490
10500
18510
10528
10330
10540
12550
10560
10570
10580
10590
10608
10618
10620
10630
10640
18650
10660
10661
10662
18663
10664
10665
10670
10680
10690
10700
107102
10720
10730
ie740
10758
18740
10770
19780
10790
10800
12810
10820
10830
10840
10856
10868
10870
10880
10890
10900
10910
10920

MORS1C POP - BC
DJINZ MORS11
LD HL. s MNUM
INC (HL.)
L.D As (MNUM)
AND 7
JR NZsMORS1D
CALL MORSW
JR MORS1A
MORS1ID CALL MORSC
JR MORS1A
MORS1Z2 CaALL MORSH
JR MORS1C
sMORS20.SET SPEED.
?
MORSZ2@® LD IXs INBUF+1
LD As (NOCHR)
LD Bs A
DEC B
CALL BCDEIN
LD Cyl.
L.D AsC
OR A
JR NZsMORSZ1
CALL BL.INK
JP MORS90
MORSZ1 LD HL s ONEWPM
L.D B0
LD DEy~1
MORSZZ OR A
SBRC HLsBC
INC DE
JP PyMORSB22
PUSH DE
POP HL.
LD (DOTO) s HL
ADD HL» HL
ADD HL. s DE
LD (DASHO) s HL.
ADD HL s HL.
.D (WORDF) s HL.
JP MORS90
k]
3MORSH. SEND DASH.
?
MORSH LD HL s (DASHQ)
L.D DE s (DASHF)
MORSH1 CALL TONE
RET
$MORST . SEND LOT,

SRESTORE #+ CONFIG
sCONTINUE IF MORE
$CONTINUE IF MORE
sBUMP CHAR CNT
SGET CHAR COUNT
SGET 3 LS BITS

$SEND WORD SPACE
SNEXT CHARACTER
$SEND CHAR SPACE
SNEXT CHARACTER
$SEND DASH

$GO TO OUTPUT

$START OF INPUT

SGET # OF INPUT CHARS

sTRANSFER TO B

s# OF CHARS TO CONVERT

3 CONVERT

$SPEED IN €

$GET SPEED FOR @ TEST

sTEST FOR @

360 IF NOT @

$ERROR-BL INK

$GET NEXT COMMAND

51 WPM UNIT

$SPEED IN BC

SQUOTIENT
SRESET CARRY
sDIVIDE BY SPEED
SBUMP QUOTIENT

SCONTINUE TIL NEGATIVE

$SAVE QUOTIENT
STRANSFER TO HL

sDOT ON TIME

SUNIT*2

SUNIT%3

$DASH ON TIME
$SUNIT*6

SWORD OFF TIME

560 FOR NEXT COMMAND

sDASH ON TIME
$DASH OFF TIME
sOUTPUT
$RETURN

Fig. 14-5 cont'd. Morse Code

MORSE CODE GENERATOR

143

azDe
@zZDE
@zZEZ

BZE4
02E7
QZER
@2EC
@ZEE
QZEF
@2FZ

O2F 4
@2F8

QZFA
22FB
02FC

Q2ZFD
QZFF
2301
2304
@303
o3a7
o308
230A
Q38D

Q30E
@311
2313
D314
2315
2316
0318
@a314A
@a31cC
P31E
@31F
2321
@323
@a3z5
327

2A2508
ED5B2568
18F3

2AZ708
EDSB2508
B7

EDS52

EB
210000
18E3

ED5B2908
18F5

D3

7D
B4

2808
REQ3
CDOEQ3
AF
D3a1
El
PEQS
CDROED3
o

11FFFF
3EQ3
19
Da
Al
D3@1
624
10FE
EEB1
Al
D301
@623
10FE
EEQL
18EA

109308
10940
12950
10968
10970
10980
10950
11000
11010
11020
i1@83@
11040
11850
11060
11070
11280
11090
11180
11110
11120
111302
11140
11150
11160

11170
11180
11190
11200
11210
11220
11230
11240
11250
11z60
11270
11280
11290
11300
11310
11320
11330
11340
11350
11360
11370
11380
11390
11400
11410
11415
11420
11430

MORST L.D HL.s (DOTO)

LD DEs (DOTF)

JR MORSH1
$MORSC. SEND CHARACTER SPACE.
MORSC LD HL.s { CHARF)

L.D DEs (DOTOQ)

OR A

SBC HL»DE

EX DE s HL
MORSC1 LD HL. @

JR MORSH1
sMORSW. SEND WORD SPACE.
MORSW LD DEs (WORDF)

JR MORSC1
sOUTPUT DOTs DASHs SPACE
kd
TONE PUSH DE

LD Asl

OR H

JR Z:TONE1L

LD Cr 3

CALL TOGGL.E

XOR A

QuUT (1)sA
TONE1 POP HL.

L.D C'0

CALL TOGGLE

RET
3
$TOGGLE. OUTPUT TONE ON OUT& AND
)

TOGGLE LD DEs~1

LD Ar 3
TOGG1 ADD HL.s DE

RET NC

AND C

ouT (1)sA

LD Bs 36

DJINZ %

XOR 1

AND C

QuUT (1)sA

LD By 35

DJNZ ¢

XOR 1

JR TOGGL
?

sDOT ON TIME
sDOT OFF TIME
$OUTPUT

s CHARACTER SPACE OFF TIME
sDOT ON TIME

sCLEAR C

sTWO UNITS

$OFF TO DE

s CHARACTER SPACE ON TIME
sOUTPUT

sWORD SPACE OFF TIME(&)
sOQUTPUT

$SAVE OFF TIME
5GET ON TIME LGB
$MERGE ON TIME MSB

5G0O IF NO ON TIME
sOUTPUT MASK

5OUTPUT TONE AND DELAY
50

STURN OFF QUTS,0UTé
$GET OFF TIME

$OUTPUT MASK

sDELAY ONLY

s RETURN

DELAY.

$~1 FOR DECREMENT
sFOR QUTPUT
SHL-1 TO HL
SRETURN IF DONE
$AND ACTIVE BIT WITH MASK
sOUTPUT
$ON CNT
$LOOP HERE
sTOGGLE QUTS
SAND ACTIVE BIT WITH MASK
s OUTPUT
$OFF CNT
$LOOP HERE
sTOGGLE OUT&
3 CONTINUE

Generator program listing.

144

Ez-80 PROJECTS

R3ze
@329
a3ze
Q32D
B32F
@331
@333
B335
@337
339
2338
@33D
@33F
B341
2343
@345
@347
@349
@a34p
@34D
B34F
@351
@353
@335
@357
Q339
2358
235D
A35F
@361
0363
D365
Q367
D369
Q34B
B3&D
B3&F
@371
6373
@373
@377
379
378
@a37n
@37F
2381
@383
2385
o387
2389

V38R

4002
8004
ADD4
8003
noa1
2004
Coa3
Boa4
(7, 17,7, o2
7004
ABB3
4004
coaz
800z
EQQ3
6004
DOA4
4083
ooa3
8001
2003
1004
6003
SRBO4
BOO4
Can4
7805
3805
1805
2805
a1, 17, Ja)
2005
Coas
EQQS
Faes
F8a5
3006
5406
CC06
805
D01
8001
o002
coaz
402
8002
2003
E003
Co03
ADR3

11440
11450
11460
11470
11480
11490
11500
1151@
11520
11530
11540
11350
115460
11570
11580
11590
114600
11610
11620
11630
11640
11650
11660
11670
11680
11690
1170@
11710
11720
11730
11740
11750
11760
11778
11780
11790
11800
11810
11820
11830
11840
1185@
11860
11870
11880
11890
11900
11910
11920
11930
11940
11950
11960

s CHARACTER TABLE.

-
2

MCHRT

EQU

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

o

240H
480H
4A0H
380H
1004
420H
3C0OH
400H
200H
470H
JAQH
440H
2C0oH
280H
3EOH
460H
4D0H
340H
300H
180H
320H
410H
360H
490H
4B0H
4CAH
578H
538H
518H
508H
500H
580H
5COH
SEQH
5FOH
5F8H
6H30H
&654H
&CCH
59aH
100H
180H
200+
2COH
2404
280H
300H
JEQH
3COH
3A0H

sTABLE OF CHARACTERS
$A
5B
sC
5D
sE
iF
3G
iH
51
3J
sK
il
M
3N
50
5P
50
$R

NS VB ME WS B U GE UE N uS vE UE uE UE ¥E G uE SE ¥R VS NE YT ua e
NEOODNUUND LR =N

ZOOWMEZDIT~AMN = =

us

Fig. 14-5 cont'd. Morse Code

MORSE CODE GENERATOR

145

The MORS10 routine generates and sends random
“haracters. An 8-bit value is generated by the input
salue for the “On” command, or by the last random
value. This value is used to find an even index of
[, 2 4,...,126. The index is then used to find a
*haracter in the MCHRT character table. Each char-
wcter in the table is made up of two bytes, as shown-
n Fig. 14-8. The second byte contains the number
f dots and dashes in the character, For example “E”
1as 1 (dot), while “P” has four (dot dash dash dot).
Che first byte is the sequence of dots and dashes
rom left to right. The first byte of “P,” for example,
s 60H, or 01100000. If 0 is a dot and 1 is a dash, then
he first 4 bits are dot dash dash dot, and this is how
he MORSIO routine generates the P character. The
sits are stripped off the left end of the value one at a
ime, and the number stripped off is the number con-
ained in the second byte of the character code. After
rach character is sent, either a character or word

BYTE 0 BYTE 1
FORMAT DOTS (0) AND NUMBER OF DOTS
DASHES (1) AND DASHES
SAMPLE
01100000 4
55 S ————
oLt S =
[aya o
(723
=
=
]

Fig. 14-6. Morse Code Generator code table format.

space is sent, the word space being sent after every
eight characters.

Variables in this program include default values for
one, three, and seven units at one word per minute
(DOTO, ONEWPM, DASHO, and WORDF), MNUM,
which holds the number of characters output, and the
character table, MCHRT, 64 characters long.

@380 B8AAO3 11970 DEFW
238F 6803 11980 DEFW
0391 4003 11990 DEFW
2393 2003 12000 DEFW
2395 2004 12010 DEFW
2397 ABB3 12020 DEFW
2399 BOO4 12030 DEFW
B39B ABO4 12040 DEFW
039D 8004 12050 DEFW
Q39F 7004 12060 DEFW
B3A1 HBB4 12870 DEFW
D3A3 4004 12080 DEFW
D3A3 1004 12090 DEFW
Q3A7 0R24 12100 DEFW
12110 3 -
12120 3DATA AREA
12130 3
Q3A9 12140 FPDATA EQU
A3A9 00 12150 DEFB
@3AA C704 12160 DEFW
D3AC 560E 12179 DEFW
B3AE AAIC 12180 DEFW
12190 5 *xxxxxx#END OF
oka7 12200 PDATAS EoQU
0824 12210 MNUM EQU
0825 12228 DOTO EQU
2825 12230 DOTF EQU
o8z7 1224® DASHO EQU
2825 12250 DASHF EQU
esz7 12260 CHARF EQU
829 12270 WORDF EQU
@4C7 12280 ONEWPM EQU
2020 12290 END

20020 TOTAL ERRORS

380H
360H
340H
J20H
H20H
3ABH
4BR@OH
4A0H
480H
470H
460H
440H
410H
400H

$

@

1zz
3670
7338
LOCATIONS TO BE
$~-PDATA
PROGR
MNUM+ 1
DOTO
DOTF+2
DOTF
DASHO
CHARF+2
1223

sD
W
iR
sV
H
3Y
sC

.
k]

-
*

-
k4

5L

-
*

sH

$8TART OF PROGRAM RAM
5 (MNUM)

s (DOTO)

3 (DASHQO)

$ {WORDF)
PROGRAMMED %% % % #

ienerator program listing.

CHAPTER 15

Morse Code Sender

This chapter describes the Morse Code Sender ap-
plication of the EZ-80. This application differs from
the last chapter in that the user can program mes-
sages into EPROM for use in amateur radio or other
applications. Up to ten messages may be included,
with lengths of over 1000 characters in the case of
a 2096-byte 2716 EPROM. Pressing a keyboard entry
outputs the message in audible form (OUT6) and
also provides an on/off condition suitable for keying
a transmitter. Speeds of 1 to 99 words per minute are
selectable.

OPERATING INSTRUCTIONS

The Sender is programmed into EPROM starting
at 220H as shown in Fig. 15-1. The Sender provides

DECIMAL
0 Hf)x E=———=————] LOCATION 1 = 20H

LOCATION 2= 02H

COMMON

AREA
PROGRAM
(SEE CHAPTER 10)

511 1FF
512 200
4 220 MORSE CODE

SENDER

PROGRAM AREA

T MESSAGE AREA
1024 400 LIMIT OF 2758
o4 B0 LIMIT OF 2716

[////ZZ3 UNPROGRAMMED AREA
Fig. 15-1. Morse Code Sender memory mapping.

X XX XX x|x x

CODE1 CODE2 CODE3 CODE 4

CODES

00 DOT 10N, 1O0FF
01 DASH 3 ON, 1 OFF
10 CHARACTER SPACE 3 OFF
11

WORD SPACE 7 OFF

Fig. 15-2. Code arrangement for message bytes.

Table 15-1. Morse Code Sender Commands

Command Description
OnE Send message n (0-9) at speed cur-
rently defined.
1nnE Set speed of transmission to nn (0-99)
words per minute.
E = "ENTER"

room for about 150 characters in the 2758 version at
the top of EPROM. Each byte of the message area
contains four codes as shown in Fig. 152. A 00

MSGTB MESSAGE
LOCATION 0
MSGTB + 2 MESSAGE
LOCATION 1
l T
MSGTB + 18 MESSAGE
LOCATION 19
ENTRY FORMAT
LEAST SIGNIFICANT BYTE ADDRESS OF
MOST SIGNIFICANT BYTE CODE MESSAGE

Fig. 15-3. Morse Code Sender message table.

{ORSE CODE SENDER

147

1220
1220
1220
1223
122é6
1229
122C
122F
1232
1235
1238
23
123E
1240

1243
1246
1249
248
124K
1250
1253
1256
1259
JZ5A
V25D
125K

J25F

1260
1262
1263
1264
12653
1267
1268
1Z6A
1268
Y26D
1270
273
1275
1278
Y279
127C
127E
128@
Y282
1285
¥287
V289
12688
128E
290

318008
214C03
21100
CDho300
210000
220808
220608
213E02
110100
C31E@@
1803

C39502

cDCCoz
222408
3ECD
322608
3E@7
322708
2AZ408
3A2608
4F
3A2708
47

7E

3c
28CA
3D

Al

25
2803
oF
18FA
B7
2011
CDEB@Z
CD@AD3
ZODE
2A2408
23
222408
18CB
FE@1
2005
CDE@@Z
1BE
FE@2
2005
CDF 402
1BED
CD@4@3

PRV
29999
10000
10010
10020
10030
10040
10050
10060
10070
10080
10090
10100
10110
10120
12130
10140
12150
10160
10170
10180
10190
10200
10210
10220
10230
10240
10250
10260
10270
10280
10290
10300
10310
10320
10330
10340
10350
10360
10370
10380
10384
10388
10392
18396
10400
10410
10420
10430
10440
10450
10460
10470
10480
10490
10500
10510
10520
12530
10540
10550
12560

¥LIST OFF
*LIST ON

3 636 I I I I I 6 I 3 W I eI I K I I I KWW I I I I I IR KK

5 MORSE CODE SENDER *
3 ?e-e3 *
3 363 26 36 3096 336 36 9 3 I I I I I K A6 I I I KWK WKW
3
ORG 220H $START EPROM AREA
MORSE EQU ® 5START OF MORSE PROGRAM
LD SP» 880H SINITIALIZE STACK
L.D HL.» PDATA 5START OF RAM DATA
LD BCs PDATAS 58IZE OF DATA
CALL INIT SINITIALIZE
MORS9@® LD HL:@ s@ TO HL
LD (LEDBUF) s HL. 5ZERO FOR MS DISPLAY
LD (LEDBUF+2) s HL 5ZERO LS DIGITS
LD HL»MORTE sFUNCTION TABLE ADDDR
LD DEs Q0@ 1H 50 MINIMUMs@-1 VALID
JP BRANCH 3 INPUT AND BRANCH
MORTE JR MORSQ@ ;@=8END MSG N
JP MOREZ0 51=8ET SPEED(MUST BE L.AST)

$MORSQ0@. SEND MSG N.

MORS@O® CALL MORMT

L.D (MPNTR) s HL.
MORS@1 LD As@BCOH

i.D (MMASK) 1 A

L.D As7

L.D (MSHFT)s A
MORS@Z LD HL.s (MPNTR)

L.D As (MMASK)

L.D CiA

L.D As (MSHFT)

L.D BsA

L.D Ay (HL)

INC A

JR Zs MORS0

DEC A

AND C
MORS®3 DEC B

JR ZyMORS3C

RRCA

JR MORS0O3
MORS3C OR A

JR NZsMORS@AS

CALL MORST
MORS@4 CALL MORAM

JR NZ s MORSOZ

LD Hi.s (MPNTR)

INC HL.

LD (MPNTR) s HL.

JR MORS@1
MORGOS CP 1

JR NZ + MORS0&

CaLL MORSH

JR MORSQ4
MORS@6 CP 2

JR NZ s MORS@7

CALL. MORSGC

JR MORS@A4
MORS@7 CALL MORSW

SPOINT TO MSG N
SINITIALIZE MSG PNTR
5INITIAL MASK
SINITIALIZE MSG MASK
5SHIFT COUNT
SINITIALIZE SHIFT #
SGET LOC OF MBG
SGET MASK
s TRANSFER TO C
SGET SHIFT #
$ TRANSFER TO B
sGET BYTE
sTEST FOR -1
5G0O IF END
s READJUST
sMASK QOUT UNWANTED
SDEC SHIFT #
$G0O IF DONE
sSHIFT RIGHT
5 CONTINUE
$TEST FOR DOT
5G0O IF NOT DOT
$SEND DOT
$ADJUST MASK AND SHIFT
360 FOR NEXT DOT & DASH
$GET POINTER
sPOINT TO NEXT BYTE
$STORE FOR NEXT ACCESS
$G0O TO INITIALIZE MASKsSHF
STEST FOR 1
sGO IF NOT DASH
$SEND DASH
$G0 FOR ADJUSTMENT
sTEST FOR 2
s60 IF NOT CHAR SPACE
$SEND CHAR SPACE
s CONTINUE
$SET WORD SPACE

Fig. 15-4. Morse Code Sender program listing.

148

Ez-80 PROJECTS

295
2299
@z9C
@:29D
@=z9E
nzAl
QAzAZ
@zA3
QA4
Q2Ab
@z2A9
@zac
BEAF
aze1
2B4
@zps
aze7
@28
azPR
@azeC
@zeD
@a:zCco
2zC1
@azcz
L g
B2Ch6
el

Qnzce
@zCF
@zDd
AzD1
BzD3
azn7
@zD9
@zDC
@ZDF

@ZEQ
B2E3
QzZE7
AZEA

DZER
BZEE
BzF2

BzF4
@2F7
B2FE

18DE

DDZz11408
JAZ308
47

@5
CD1200
4D

79

B7
2006
CDIROG
c3zCaz
21C704
Q600
11FFFF
e7
ED42
13
FzR4@2
D5

E1
222808
29

i9
222408
29
222008
cazcoz

3A1408
27

4F

0600
DDZ1ZE®S
DDO?
DD4EQR
DD&6@1
€9

ZAZABB
ED5B2808
CD1D@3
co

2AZ2808
ED5B2808
18F3

2AZABB
EDSR:z808
B7

12570
105380
10590
12600
10610
10620
10630
10640
10650
10660
106461
10662
1P663
106464
10665
18670
10680
13690
10708
10710
10720
10730
18740
12750
107460
10770
10780
10790
10800
10810
1080
10830
10840
12850
10860
10870
10880
10890
12900
10910
10920
10930
10940
12950
10960
10970
10980
10990
11000
11210
11020
11030
11040
11050
11060
11070
11280
11090
11100
11110
11120
11130

JR

MORS@4

SMORG20. SET SPEED.

MORSZ@ LD
L.D
LD
DEC
caLL.
LD
LD
0OR
JR
CAL.L
JP

MORS21 LD

MORS2Z OR

IXs INBUF+1
A {NOCHR)
Eis A

B

BCDEIN

Cal.

AsC

A

NZ s MORSZ1
BL.INK
MORSQQ

HL. s ONEWPM
B0

DEs—1

A

HL.sBC

DE
PsMORSZ2
DE

HL.
(DOTO) s HL
Hi_s HL

HL.s DE
(DASHO) s HL.
HL s HL.
(WORDF) s HL
MORS90

MORMT. POINTS TO MESSAGE N.

MORMT L.D
RLCa
LD
L.D
LD
ADD
LD
LD
RET

As (INBUF+1)

Cr A

B@
IXsMSGTR
IX.BC

Ls (IX)
Hs (IX+1)

MORSH. SEND DASH.

MORSH LD
L.D
CALL
RET

MOREH1

MORST.SEND DOT.

MORST LD
L.D
JR

[L JRVT T

MORSC LD
LD
OR

HL s (DASHO)
DE s (DASHF)
TONE

HL s (DOTO)
DE» (DOTF)
MORSH1

MORGC.BEND CHARACTER SPACE.

HL. s (CHARF)
DE» (DOTO)
A

36O TO OUTPUT

$START OF INPUT
SGET # OF INPUT CHARS
$TRANSFER TO B
s# OF CHARS TO
s CONVERT
SSPEED IN C
sGET SPEED FOR @ TEST
TEST FOR @
560 IF NOT @
SERROR~BLINK
sGET NEXT COMMAND
51 WPM UNIT
$SPEED IN BC
$QUOTIENT
sRESET CARRY
$DIVIDE BY SPEED
$BUMP QUOTIENT
sCONTINUE TIL.
$SAVE QUOTIENT
s TRANSFER TO HL
sDOT ON TIME
SUNIT*2
SUNIT*3
sDASH ON TIME
SUNIT*4
sWORD OFF TIME
$G0O FOR NEXT COMMAND

CONVERT

NEGATIVE

5GET N

SN*2Z

iN¥2 IN C

sN#2 IN BC

SMEGSAGE TABLE ADDR
SPOINT TO MESSAGE
$GET LS BYTE

5GET MBS BYTE
5RETURN

iDASH ON TIME
sDASH OFF TIME
sOUTPUT
SRETURN

sDOT ON TIME
sDOT OFF TIME
sOUTPUT

s CHARACTER SPACE OFF TIME
sDOT ON TIME
sCLEAR C

Fig. 15-4 cont'd. Morse Code

ORSE CODE SENDER

149

@2FC
OZFE
@ZFF
o302

2304
2308

2304
@3ap
Q30F
@31z
@315
8317
2319
@31C

Q31D
@31E
Q31F
0320
a3zz
A3z4
327
@328
3zA
3z
23zD
0330

@331
@334
Q336
@337
0338
0339
233
233D
Q33F
2341
8342
@344
0346
@348
034A

@34C
B34¢C
B34E
@34F
Q350
@352

ED52
EE
210000
18E3

EDSBzCO8
18F5

3AZ708
D&6@2
322708
3A2608
CR3F
CB3F
322608
ce

D5

n

B4
2808
QED3
CD31@3
AF
D3@1
El
AEBO
CDh3103
ceo

11FFFF
JE@3
19
D@
Al
D3A1
B4
10FE
EEQ1
Al
D321
B623
10FE
EEQ1
18EA

ralvilralv]
Ui’}
an
C7084
560E

11140
11150
11160
11170
11180
11190
11208
11218
11220
11230
11240
11250
11260
11270
11280
11290
11300
11310
11320
11330
11340
11350
11360
11370
11380
1139@
11400
11410
11420
11430
11449
11450
11460
11470
11480
1149@
11500
11510
11520
11530
11540
11330
11568
1157@
11580
11590
11602
11610
11620
11630
11640
114645
11650
11668
11670
11680
11690
11700
11710
11720
11730
1174@

seC

EX
MORSC1 LD

JR

HL.s DE
DE s HL
HL.,@

MORSH1

?
$MORSW. SEND WORD SPACE.

MORSW LD
JR

$MORAM. ADJUST MASK AND SHIFT COUNT.

?

MORAM LD
s5UB
LD
LD
SRL
SRL
LD
RET

.
k]
.
2

k]

TONE PUSH
LD
OR
JR
LD
CalLL
XOR
ouT

TONE1 POP
L.D
CALL
RET

.
?

sTOGGLE.OQUTPUT TONE ON OUT6& AND

TOGGLE LD
L.D

TOGG! ADD
RET
AND
ouT
LD
DJINZ
XOR
AND
ouT
LD
DJINZ
XOR
JR

sDATA AREA

PDATA EQU
DEFW
DEFE
DEFB
DEFW
DEFW

DE s (WORDF)
MORSC1

As (MBHFT)
(MEHFT) s A
As (MMASK)
A
A
(MMASK)» A

QUTPUT DOT» DASHs 5PACE

DE.
As L

H
ZsTONEL
Cs 3
TOGGLE
A
(1)+A
HL.

Ce0
TOGGLE

DEs—1
As 3
HL s DE
NC

C
(1)+A
B3 36
b 3

1

C
(1)sA
B35
$
1
TOGG1

sS88 8

1223
3670

$TWO UNITS

sOFF TO DE

$ CHARACTER SPACE ON TIME
sOQUTPUT

sWORD SPACE OFF TIME
5OUTPUT

SGET SHIFT #
3ADJUST

$STORE FOR NEXT
sGET MASK
$ALIGN DOWN 2

$8TORE FOR NEXT
s RETURN

$SAVE OFF TIME

5GET ON TIME LSB
tMERGE ON TIME MSR
$GO IF NO ON TIME
sOUTPUT MASK
sOUTPUT TONE AND DELAY
10

STURN OFF OUTS.0UT6
$GET OFF TIME
$OUTPUT MASK

sDELAY ONLY

s RETURN

DELAY.

5—-1 FOR DECREMENT
SFOR OUTPUT
$HL~1 TO HL
SRETURN IF DONE
SAND ACTIVE BIT WITH MASK
5OUTPUT
5ON CNT
$LOOP HERE
sTOGGLE OUTS
$AND ACTIVE BIT WITH MASK
sOUTPUT
5OFF CNT
5LOOP HERE
SFLIP OUTé
5 CONT INUE

5START OF PROGRAM RAM
;5 (MPNTR)

5 {(MMASK)

5 (MSHFT)

$(DOTOQ)

3 ({DASHO)

ender program listing.

150

Ez-80 PROJECTS

code generates a dot. A 01 code generates a dash.
A 10 code generates a character space and a 11 code
generates a word space. A message is terminated by
a byte of all ones. (This means that up to three codes
before the byte of all ones may contain a code of 10
to generate “nulls.”) The location of each message is
placed into a Message Table (MSGTB). Each entry
in the message table is in the standard Z-80 address
format, last significant byte followed by most signifi-
cant byte (see Fig. 15-3).

There are two commands in the Sender (see Table
15-1). The “Inn” command sets the speed, as in the
case of the Morse Code Generator of the last chapter.
From 1 to 99 words per minute may be specified with
the default (reset) value being one word per minute.

The “On” command starts transmission of message
n, 0-9. No check is made on the validity of the
message; that is, if there is “garbage” in the specified

message area, garbage will be sent! Upon completion,
the program returns to await the next keyboard com-
mand, either next message or set speed.

APPLICATIONS HARDWARE

Monitoring the output is possible by feeding the
output of OUT6 into either an on-board amplifier
and speaker or into external audio (see Fig. 14-2).
Output line OUTS5 is the actual keying line that can
be used with a relay or solid-state keying device.
(Note that the sense of OQUTS is inverted, that is, “on”
is a logic 0, and off is a logic 1.)

THEORY OF OPERATION

Parts of the Sender (see Fig. 15-4) are identical
with the application of the last chapter. The genera-

@354 AALC 11750 DEFW 7338 $ (WORDF)
@356 HAB3 11760 DEFW SAMPLE 5 (MSGTR)
@358 0000 11770 DEFW @
354 0000 11780 DEFW]
@35C oneo 11790 DEFW @
A35E 00ee 11800 DEFW]
23460 D000 11810 DEFW @
@362 2006 11820 DEFW a2
2364 D000 11830 DEFW @
B3646 DO 1184@ DEFW 2
0368 00RO 11850 DEFW]
PB1E 11860 PDATAS EQU +-PDATA
11870
11880 ;sMESSAGE AREA HERE TIL END OF EPROM
11890 3
Q36A 42 11980 SAMPLE DEFB 42H sDE WD&CTY
@a36B 31 11901 DEFB 31H
QA36C b4 1190z DEFE b4H
@36D 24 11903 DEFB 24H
@A346E B2 11504 DEFE @zH
A3&LF 44 119@5 DEFR 44H
a37@ 99 119046 DEFE FIH
@371 14 119a7 DEFE 16H
0372 FF 1198 DEFE @FFH
11930 s#%xxx%%END OF LOCATIONS TO BE PROGRAMMED* % %% %% %
28z4 11948 MPNTR. EoU PROGR
2826 11950 MMASK EQU MPNTR+2
a8az7 11968 MSHFT EQU MMASK+1
n8=8 11270 DOTO EQU MSHFT+1
2828 11982 DOTF EQU DOTO
a82A 11990 DASHO EQU DOTF+2
o828 12000 DASHF EQU DOTF
28z2A 12010 CHARF Eau DASHO
aezc 12020 WORDF EqU CHARF+2
@8ZE 12030 MSGTR EQU WORDF +2
Qa4cC7 12040 ONEWPM EGQU 1223
2200 12050 END

Q020 TOTAL ERRORS

Fig. 15-4 cont’d. Morse Code Sender program listing.

ORSE CODE SENDER

151

on of dots, dashes, and intervals, and the processing
" the speed input are the same. The “On” command
itry, however, works with a predetermined message
ther than generating random characters. The “n”
" the input (0-9) is used to access the nth entry of
¢ Message Table (MSGTB). Each entry should hold
16-bit address that points to a code message. Each
vte of this message is picked up and stripped of its
ur 2-bit codes. Each code results in either a dot
)0), dash (01), character space (10), or word space
l1) being sent. Every byte is first checked to see
hether it contains all ones; if this is the case, the

routine terminates by transferring control back to
MORS90 to get the next keyboard command.

Variables used in this program are the variables
for intervals (ONEWPM, DOTO, DASHO, and
WORDF), the Message Table pointers (MSGTB to
MSGTB+19), and three variables used in stripping
the codes: MPNTR, MMASK, and MSHFT. MPNTR
points to the next byte of the message being trans-
mitted. MMASK holds the current mask for the code
position (11000000, 00110000, 00001100, or 00000011).
MSHFT holds a count that specifies how far to the
right the code must be shifted to right justify it into
a value of 00, 01, 10, or 11.

CHAPTER 16

Telephone Dialer

This chapter describes a Telephone Dialer appli-
cation for the EZ-80. Up to 100 telephone numbers of
1 to 11 digits can be stored in the EZ-80 (2716 ver-
sion). To call any of the 100, the appropriate number
0-99 is entered on the keyboard of the EZ-80, and the
EZ-80 automatically dials the number. Another func-
tion implemented in the EZ-80 is an “elapsed time”
capability; the EZ-80 displays a running count of min-
utes and seconds that have elapsed since the beginning
of the call. Five of the numbers are temporary num-
bers that are stored in RAM and thus volatile (power
down destroys the data); 95 of the numbers are
permanently stored in EPROM (up to 10 in the 2758
or 95 in the 2716 version).

OPERATING INSTRUCTIONS

The Dialer is programmed into EPROM starting at
220H, as shown in Fig. 16-1. There are four functions
that can be entered for the Dialer as in Table 16-1.

Entering a “0nl23 . . . m” records the string of
digits “123 . . m” as telephone number n. Up to 11
digits may be entered as the number, or as few as
one. The entry number n may be 0-4, representing the
five locations in EZ-80 RAM. Any entry number over
4 is reserved for numbers that are permanently stored
in EPROM. Entry errors cause the usual blinking dis-
play.

Entering a “2nn” displays the current telephone
number for nn on the LED display. Valid entry num-
bers are 0-99, representing five numbers in RAM (0-4)
and 95 numbers in EPROM. This function enables a
check on the validity of any temporary (RAM) or
permanent number (EPROM).

Entering “3nn” automatically dials number nn and
displays it on the LED display as the number is
dialed. If an incorrect number is present in RAM or
EPROM, the program will not check for validity.

Once the number is dialed, function “1” may be
entered. This function displays elapsed time in min-

Table 16-1. Telephone Dialer Commands

Command

Description

OnmmmmmmmE

1E

2nnE

3nnE

Record number mmmmmmm as
telephone number n (0-3) in RAM.
Start display of elapsed minutes
and seconds from 0. Pressing
any key returns to next command.
Display number nn (0-99) on
LED display for validity check.
Automatically dial number nn
(0-99). Pressing ENTER again re-
dials the same number.

E = "ENTER"

utes and seconds from the start of the function entry.

Pressing any key terminates the function.

DECIMAL HEX

0 0

511 1FF

(SEE CHAPTER 10)

E LOCATION 1 = 20H
COMMON LOCATION 2 = 02H

AREA
PROGRAM

512 200 o
4 220 1 TELEPHONE DIALER

PROGRAM AREA

NUMBER AREA
0o LIMIT OF 2758
2008 800 LIMIT OF 2716

(/2] UNPROGRAMMED AREA

Fig. 16-1. Telephone Dialer memory mapping.

TELEPHONE DIALER

153

TELEPHONE TELEPHONE LINE

1N4002 £ g
DIODE 3
0uT 6

6-9 Vdc,
500-2 COIL
12mA CURRENT :

NOTE ~ TTTTTTTTTT

COM (COMMON) AND NC (NORMALLY CLOSED) CONTACTS OF THE RELAY
ARE USED IN THIS APPLICATION.

CHANGE WIRING ON FIG. 10-6 ACCORDINGLY!

Fig. 16-2. Telephone line interface.

APPLICATIONS HARDWARE

Most telephone numbers may be dialed by inter-
rupting the circuit. A rotary dial phone does exactly
that by means of a commutator switch, outputting ten
pulses for 0, five for 5, and so forth. This application
interfaces to a phone line as shown in Fig. 16-2. The
relay is controlled by output line 6 (OUT6) of the
EZ-80 and breaks the circuit the appropriate number
of times for each digit. Bear in mind that the voltages
may be somewhat high (during ringing) and that
the phone circuit should be very well isolated from the
EZ-80. The phone company will undoubtedly agree!

NOTE:

FCC RULES FORBID DIRECT CONNECTION OF UN-
APPROVED EQUIPMENT TO PHONE LINES, A
“COUPLER” MUST BE USED BETWEEN THE LINE
AND SUCH EQUIPMENT. CHECK WITH YOUR
LOCAL PHONE COMPANY TO INSTALL SUCH A
COUPLER.

THEORY OF OPERATION

Numbers are stored in both RAM and EPROM as
shown in Fig. 16-3. Each number is stored as a single
bed digit in one byte. The number is terminated by
a —1 in the last byte. The RAM table is located at
the start of program RAM (RAMT) and is five en-
tries of 12 bytes each, or 60 bytes. This provides
enough room for variable storage (800H to RAMT
—1) and the stack at top of RAM. The EPROM table
starts at the last program location (PROMT). A
sample number has been entered to illustrate the cod-
ing. Remember that each number burned into the
EPROM must be terminated by a —1 (0FFH) and

7654 3210

BYTEO [0 00]0001] !
1 [0oo00l0111]7
2 fooooloo0d] 1
3fooo0jo100] 4
410000101 011 51 ypeppong No
S 1000040101 50 o) cecing
6 000001 01] 5
7 [0000]0001] 1
8 [0000[00170] 2
9 [0000]0001] 1
10 [0000]o010] 2
1 [T1 11 11 711]-1 TERMINATOR

Fig. 16-3. Telephone Dialer number storage.

must start at the first byte of the table entry. Each
entry must be 12 bytes even if the last are unused.
There is enough room in EPROM (2758) for 10
(2758) or 95 (2716) entries. Unused entries must be
filled with —1s (normal initial state of EPROM).

The program (Fig. 16-4) is made up of five sec-
tions—initialization, and processing for the four func-
tions. In the case of the Dialer, there are no variables
in RAM storage and therefore no CALL is made to
INITialize. The CALL to BRANCH inputs the com-
mand and branches out to one of the four functions.

The “0” function records a number from the input
string. The entry number is checked for validity. If
it is valid, the location of the entry in RAM is com-
puted. Entry number 0 is at the start of the RAM
table, entry 1 is at start + 12, entry 2 is at start + 24,
and so forth. Before the number is filled into the RAM
table, the 12 bytes of the entry are filled with —1 to
mark the termination for the number. The number
is then moved to the table entry, starting at the first
byte of the RAM entry (LDIR).

The “1” function zeros the real-time-clock variables,
HUNS, SECS, and MINS, to enable a start from
elapsed time of 0. This function continually displays
the MINS and SECS value on the LED display after
conversion to bed (two calls to BINBCD).

The “3” function displays the current number in
RAM or EPROM and dials the number. The entry
number is first checked to see whether it is in RAM
(0-4) or EPROM (5-99). The location of the RAM
or EPROM table is established as a result of this
test. The displacement of the entry from the start of
the table is then computed by multiplying the RAM
entry number by 12 or by multiplying the EPROM
entry number — 5 by 12. It is then added to the loca-
tion of the table to locate the proper entry.

Once the entry has been located, each digit of the
entry is simultaneously displayed and dialed. Dialing
is implemented by turning on OUTS for %o of a sec-
ond and then turning it off for %o of a second for
each pulse required. Dialing of each digit continues
until a —1 is detected as the terminating character.

154

Ez-80 PROJECTS

azze
220
Q220
8z23
Bzzé6
Q229
@z22C
Bz2F
2231
0233
D234
@235
@237
D23A
223D
@240
0243
B246
RB249
Dz24E
24D
Az4F
1 g Y4

R255
@azs9

25B
A25E
Q261
D263
D266
268
azop
@z26D
B:7@
Az272
D275
0278
0279
B274
Qz27R
@z7¢
az7Dn
A27E
=81
@za2
284
@286
0287
2288
2284
@:28D
Qx8E

318008
£17803
210700
CDR300
21zp08
JEFF
R63C
77

23
18FC
210000
220808
220A08
214902
110300
C31EQQ
180@a
1851
1803
C37303
C3Ds0Z

DDZ11408
0601
110500
CD120@
3805
CD1E2®
1BCF
342308
FEQE
F26302
FED3
FA&3DZ
110000
ER

19

19

19

29

29
112E08
19
3EFF
B60C
77

23
10FC
B1F4FF
a9
111508

alrilra iy
29999
10000
10010
12020
19@33
10040
12052
10068
10070
18071
10072
10073
10074
10075
10076
10@77
12078
18@79
10280
10098
10100
10110
10120
12130
10140
12150
10160
12170
12175
10186
12190
12200
12210
10220
12250
10260
1ez7@
10280
10290
102935
10296
10297
10298
10299
10320
10310
10320
103302
10340
12350
10340
10378
12380
10390
10400
12410
10420
12430
10440
10450
12460

DIALQR

?

sDIALB@. RECORD #.

LD IXs INBUF+1

LD Bl

LD DE+5

CaLl. BCDRIN

JR CsDIALDY
DIAL@A CALL BLINK

JR DIAL9@
DIALGAL LD Ar (NOCHR)

cp 14

Jp PsDIALGA

cpP 3

JP M» DIALOA

LD DE.@

EX DE s HL

ADD HL s DE

ADD HL.s DE

ADD HL.» DE

ADD HL.= Hi.

ADD HL.s HL.

LD DE» RAMT

ADD HL.s DE

LD Ay OFFH

LD Byl
DIALR: LD (HLY » A

INC HL.

DJNZ DIAL@Z

L.D BCy—12

ADD HLsBC

LD DE s INBUF +2

*
*

sSTART EPROM AREA
5START OF DIALER PROG
SINITIALIZE STACK
$START OF RAM DATA
581ZE OF RAM DATA
SINITIALIZE

iRAM TABLE ADDRESS

51

sFOR 5 ENTRIES

3S8TTORE —1

sBUMP PNTR

;LOOP
50
$ZERO MS DISPLAY
$ZERO LS DISPLAY
sFUNCTION TABLE ADDRESS
5@=MINIMUM: @-3 VAL ID
$ INPUT AND BRANCH
s @=RECORD#
5 1=ELAPSED TIME
52=DISPLAY#H
5 3=DIAL
SLINK

NUMBER N(LAST!)

*LIST OFF
*L.IST ON
R X A I T ST T L Yy I I Ty
5 TELEPHONE DIALER
5 22-09
5 AT N I BT T I I T IR
ORG S20H
DIALER EQU +
LD SPs 880H
LD HL. s PDATA
LD BCs PDATAS
CALL INIT
LD HL 1+ RAMT
LD AsBFFH
LD Bs 60
DIAL9? LD (HL) 9 A
INC HL
DJINZ DIAL99
DIALS® LD HL.@
L.D (LEDBUF) s HL.
LD (LEDBUF+Z) s HL.
LD HLsDIALTE
L.D DE.@3H
JP BRANCH
DIALTE JR DIAL QG
JR DIAL.1@
JR DIALZE
JP DIAL30
DIALZER JP DIALZA

SSTART OF N
s# INPUT
sLIMIT OF 5
5 CONVERT
5G0 IF N OK
iN SPECIFIES EPROM
560 AGAIN
SGET # OF
sTEST FOR LT 14
SERROR IF 14 OR 14+
sTEST FOR @-Z2
$ERROR IF @-2
5@ TO DE
(N IN DE@ IN HL
IN*1
SN%2
sN*3
sN*é&
SN¥1Z2
$68TART OF RAM TABLE
SETART+N*12
51 FOR FILIL.
s# OF BYTES

$STORE -1

sEBUMP POINTER

s CONTINUE
sDECREMENT
sPOINT TO #
sPOINT TO #

CHARS INPUT

Fig. 16-4. Telephone Dialer

LEPHONE DIALER

155

0271
Q294
@295
Q296
Qaze7
D299
294
229C

3A2308
4F
@D

@D
B24600

ER

EDBG
1899

029E
B25F
0zAZ
82A5
ozA8
@2AB
BzAC
02ZAE
0zBZ
@ZB5

AF
320408
328308
320208
3AB308
&F
2600
DDz12408
CD1500
2A2708
22BB 220408
azBE8 3A0z08
Q2BE 6F
@:2BF 2600
@zC1 DD21z408
@z2C3 CD1500
0208 2AZ708
2zCB 220808
2z2CE CDhaCeo
@zD1 28D5
@zD3 C337ez

QzDé6
2zD8

2500
21000@
0:zDe 220808
QZDE 2z0A08
QzZE1 €5
AZEZ DDZ2114@8
QZESH 3AZ308
Q2E9 FE@Z
QZER F2F30Z
QZEE 2A2908
02F1 1824
Q2F3 47
D2F4 @5
Q2F3 110500
QzF8 CD12p0
@2FB 112808
QZFE 380D
@3ee 7D
0301 FEb4
Q303 Fz6302
2306 117F@3
0309 @1FBFF

030C 09
038D 29
030E =29
@38F ES5
0310 29

10470
10480
10490
12510
10520
10525
10530
10540
10550
12560
1057@
10580
10598
10600
10610
10620
10630
10640
10650
10660
10665
18666
10670
10680
10690
10700
10710
10715
10716
10720
10730
10740
10750
10760
10770
10780
10790
10800
10810
10820
10830
10840
10841
10842
10843
10844
10850
10840
10870
10880
1089@
10500
10901
10902
10903
10910
10920

10930
10940
10950
1076@

10970

sDIal.1@.

DIALIO

DIAL11

.
?

sDIALZO.

DIALZO
DIAL29?

DIALZ8

DIALZ1

L.D
LD
DEC
DEC
L.D
EX
LDIR
JR

DISPLAY

XOR
L.D
LD
L.D

JR
JP

DISPLAY

L.D
LD
LD
L.D
PUSH
LD
LD
cp
JP
LD
JR

Ay (NOCHR)
CsA

C

C

B0
DE s HL.

DIAL9@
ELAPSED TIME.

A

(HUNDS) s A
(SECS)+A
(MINS)A

As (BECS)
LsA

Hs@

IXsBUFR
EINBCD

HL.» (BUFR+3)
(LEDRUF+2) s HL
A (MINS)
Lsé

H:@
IXsBUFR
BINBCD

HL.s (BUFR+3)
(LEDBUF) s HL.
KEYSCN
Z:DIALLL
DIAL9G

#.

B0

HL.- @
(LEDBUF) s HL
(LEDRBUF+2) s HL.
EC

IXs INBUF+1
As (NOCHR)
PsDIALZS
HL.s (PRL.OC)
DIALZ7
BiA

B

DE+3
B.CDRIN

DEs RAMT
CsDIALZ1
Asl.

100
PsDIAL.GA
DE s PROMT
BCy-35
HLs+BC
HL. s HL
HL s HL.

HL.

HL.s HL.

sGET # INPUT
s TRANSFER TO C
$ADJUST FOR "@N®

sINPUT # IN BC
3SWAP FOR LDIR
SMOVE TO TABLE
$G0O FOR NEXT INPUT

$ZERO A

5@ TO 10@THS
$@ TO SECS
3@ TO MINS
sGET SECONDS
SNOW IN L
SNOW IN HL
sTEMP BUFFER
s CONVERT AND
sGET SECS
sDISPLAY
$GET MINUTES
SNOW IN L
SNOW IN HL.
sTEMP BUFFER
5 CONVERT AND STORE
$GET MINS

sDISPLAY

$TEST FOR KEYPUSH
5GO IF NONE

560 FOR NEXT INPUT

STORE

sSET DISPLAY MODE
5@ TO Hi.

$ZERO MS DIGPLAY
$ZERO LS DISPLAY
sSAVE FLAG

$8TART OF N

i# OF CHARS INPUT
STEST FOR @ OR 1
3GO IF 2 OR 2+
$GET PREVIOUS LOCN
sDON’T COMPUTE LOC
s TRANSFER TO B
$ADJUST FOR »2°
5RAM LLIMIT

s CONVERT

s RAM TABLE ADDRESS
560 IF RAM

SGET #

STEST FOR GE 100X
50 IF GE 100
$PROM TABRLE ADDRESS
$FOR ADD

$ADJUST FOR PROM
SN*2

$N*4

5SAVE N¥*4

sN*8

gram listing.

156

Ez-80 PROJECTS

2311
@31z
2313
@314
@317
2318
@31C
231D
D31E
A31F
321
a3z3
D324
2327
n3:z8
B32A
@a3:2C
a3z
2330
@331
D334
Q3346
D338
h339
@33C
P33F
D340
0342
D343
D344
D345
0347
D349
A344A
@34C
Q34K
8351
354
D355
0357
A35A
235D
B35E
B360
D363
23646
0367
B369
D364
234D
D370

373
B375

@378
2378
0379

c1
29

19
222908
DD210808
Dt

7E

23

DS
FEFF
2846
F5
DD7EQ®
ac
FE@A
2001
AF
DD7700
Fi
320R08
CB42
200A
ES
Z1E803
CD1800
E1
18D%9
47

ES

¥
2002
DEHDA
s
3EFF
D3B1
213200
CD1B0?
AF
D301
213200
CD180?
ci
10E9
Z1EE@Z
CD180?
E1
18832
D1
Z1ES03
CD1800
C33702

2601
C3DBaz

aa
20

12980
10990
11000
1100z
11005
11010
11020
11025
11830
11840
1185@
110855
11856
11057
11058
11059
11060
11061
11062
11063
11070
11080
11852
11100
11110
11120
11130
11140
11150
11160
11170
11175
11180
11190
11200
11z1@
1122

11230
11240
11250
11260
11270
112680
11300
11310
11315
11320
11330
11340
11350
11360
11370
11380
11390
11400
11410
11450
11491
11492
11493
11494
11495

DIALZY
DIALZZ

DIALZA

DIALZ3

DIALZ4

DIALZS

.
?

LD
PUSH
LD
ouT
LD
Cal.L
XOR
ouT
LD
CAL.L.
POP
DJINZ
LD
caLl.
POP
JR
POF
LD
Cal.l
“JP

sDIAL3B.DIAL

DIAL 3@

-
k

LD
JP

sDATA AREA

FDATA

EQU
DEFB
DEFE

BC

HL.s BC

HL.s DE
{PRLOC)Y s HL
IXs LEDBUF
DE

As (HL)

HL.

DE

BFFH
ZsDIALZS
AF

A (IX)

A

1@
NZsDIALZA
A

(IX)sA

AF

(LEDBUF+3) s A

@D
NZsDIALZ3
HL.

HL.+ 1000
DEL.AY
HL.
DIALZZ
BsA

HL.

A
NZsDIALZ4
P10

BC

As OFFH
(1)+A
HL.s 5@
DEL.AY

A

(1)+4
HL.+ 5@
DELAY
BC
DIALZ4
M.+ 750
DEL.AY
HL.
DIALZ2
DE

HL.» 100@
DEL.AY
DIALSA

Bl
DIALZ9

%
@
@

sGET N*4

sN*12

sTABLE STARTHN*12

5SAVE LOCATION

sPOINT TO FIRST DIGIT
sGET FLAG
sGET DIGIT
sBUMP PNTR
1SAVE FLAG
$TEST FOR END
$G0 IF END
$5AVE DIGIT
sGET DIGIT #
$BUMP BY ONE
sTEST FOR 1@
560 IF NOT 1@
510-START AT @
$STORE
SRESTORE DIGIT
sDISPLAY
sTEST MODE
GO IF DIAL MODE

sONE SECOND VALUE
3GO FOR NEXT DIGIT
sSAVE POINTER
560 FOR NEXT DIGIT
sGET NUMBER
$SAVE POINTER
STEST FOR @
560 IF 1-9
30=10 PULSES
$SAVE COUNT
sALL. ON
s TURN ON PULSE
31/2@8TH SEC
s DEL.AY
sALL OFF
sTURN OFF PULSE
51/20TH SEC
sDELAY
$GET COUNT
5GO IF MORE
53/4 SEC CNT
sDELAY
$RESTORE POINTER
5G0O FOR NEXT DIGIT
SREBET STACK
31 SECOND DELAY
sDELAY
$GO FOR NEXT FUNCTION

$SET DIAL MODE
3GO TO DIAL

sSTART OF PROGRAM RAM
s {BUFFR)

Flg. 16-4 cont'd. Telephone Dialer program listing.

TELEPHONE DIALER

157

@37
a37e
@a37e
@37D
ana7

BA37F
a37F
P381
@383
2385
@387
0389

2824
o8z
agze
rdnlrl]

2000

an
@2a
an
Zpeg

2104
0104
0505
0521
ez01
@ZFF

TOTAL.

11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11513
11520
11521

11522
11560

ERRORS

DEFR
DEFE
DEFB
DEFW
PDATAS EaU

3 EEXXEFROM NUMBER AREA. HERE TO END OF EPROM*%%%

PROMT Eal
DEFW
DEFW
DEFW
DEFW
DEFW

FREXEFHREREND OF

BUFR Eot)

PRLOC Eau

RAMT Eau
END

@

@

]
RAMT
%-PDA

%

@401H
B34@1H
a5sa5H
A1B5H
B1azH
arraz
LOCAT
PROGR
BUF R+
PRLOC

5 (PRLOC)
TA

SSTART OF EPROM NUMBERS

H
TONE TO BE PROGRAMMED® % %% %%

HLOCATION OF (BUFR)
5 SLOCATION OF (PRLOC)
+2 SLOCATION OF RAM AREA

The “2” function is identical with the “3” function
except that it does not dial the number. A “flag” (con-
tained in the B register) is maintained so that the
dialing function may be skipped for a display only.

Fig. 16-4 cont'd. Telephone Dialer program listing.

No variables are contained within the RAM area

except for the RAM table entries and a temporary
buffer of five bytes, BUFR, and variable PRLOC.

CHAPTER 17

Frequency Counter[Tachometer

This chapter describes a frequency counter/tach-
ometer application for the EZ-80. In this application
the EZ-80 monitors the IN1 line to count pulses.
Whenever the line changes from 0 to 1 and from 1 to
0, an interval count is incremented by 1. If the IN1
is connected to a source of pulses such as is shown in
Fig. 17-1, the Frequency Counter can be used as either
a tachometer or frequency counter and will count as
few as one pulse per minute up to 50,000 pulses per
minute. -

The period or time interval over which pulses may
be counted is user selectable; 0.1 second, 1 second,
1 minute, or manual operation may be specified. A
“debounce” time in increments of 1 millisecond is
also selectable by keyboard input. Many signals have
“bounce” associated with them as shown in Fig, 17-2.
By delaying the proper time before testing the signal
again, this bounce may be disregarded in accumulating
counts. Debounce delay times of 1 millisecond to
0.255 second are possible.

OPERATING INSTRUCTIONS

The Frequency Counter is programmed into
EPROM starting at 220H as shown in Fig. 17-3. Other
applications programs may be programmed into

SIGNAL
LIGHT PHOTO- CONDITIONER
SOURCE DIODE (SEE FIG. 10-12)
i, UVAVAV U

IN1

[1]2[3}4]

EZ-80

Fig. 17-1. Frequency Counter/Tachometer use.

158

BOUNCE BETWEEN
OPEN AND CLOSED

SWITCH
CLOSED

SWITCH m ml SWITCH
OPEN OPEN

(A) Switch closure bounce.

"1" LEVEL

I amBicuous
| AREA
— 0 LEVEL

(B) Signal from transducer.

Fig. 17-2. Bounce in signals.

EPROM if their locations do not conflict with the
Frequency Counter. Use the techniques described in
Chapter 10 to transfer control to the Frequency
Counter if other programs are coresident in EPROM.

Table 17-1. Frequency Counter/
Tachometer Commands

Command Description

OnE Set counting interval. 0.1 second = O;
1 second = 1, 1 minute = 2; manual
= 3.
Start counting over currently defined
interval. If not manual, continually dis-
play number of counts received during
each interval. If manual, count pulses
until key depressed at which time dis-
play will be made.
Specify a debounce delay of nnn % 1
milliseconds (1 millisecond to 0.255
second). If n = 0, do not debounce.

E = "ENTER"”

1E

2nnnE

FREQUENCY COUNTER/TACHOMETER

If only the Frequency Counter is resident, locations
1 and 2 of the EPROM will hold 20H and 2, respec-
tively.

There are three functions that may be input from
the keyboard for the Frequency Counter (see Table
17-1). Entering a “On” sets the period (interval) for
counting. N=0 specifies %o second, N=1 is 1 second,
N=2 specifies 1 minute, and N=3 designates manual
operation,

Entering a “2nnn” specifies the debounce time de-
lay. If a 2 function is not input, there will be no (ap-
preciable) delay in counting pulses. If the 2 function
is specified, the program will delay nnn * 1 milli-

DECIMAL HEX
0 0 E==————===ooo LOCATION | = 20H

COMMON LOCATION 2 = 02H
AREA
PROGRAM
(SEE CHAPTER 10)
511 1FF
512 200
544 220
FREQUENCY COUNTER/ TACH-
OMETER PROGRAM AREA
%852 ggg LIMIT OF 2758
2047 TFF
2048 800 LIMIT OF 2716

/22 UNPROGRAMMED AREA

Fig. 17-3. Frequency Counter/Tachometer memory mapping.

seconds after each change in signal level (see Fig.
17-4). The debounce delay should be chosen when
the signal is not “monotonically increasing or decreas-
ing” as shown in the figure.

Entering a “1” starts the count. If automatic (non-
manual) mode is selected, the program will count
over the interval specified and display the results on
the LED display. The display will change every %o,
1, or 60 seconds depending upon the interval. If
manual mode is selected, the program will count
pulses until any key is depressed, at which time it
will stop with the count accumulated over the manual
interval displayed. Pushing the key for the next com-
mand reenters command processing.

159
FIRST
FIRST DETECTION
DETECTION OF OF TRANSITION
NEW COUNT FROM1TO 0
| _DELAY DELAY
20 ms“ 20 ms‘]
—— "1" LEVEL

AMBIGUOUS
AREA

"0 LEVEL
Fig. 17-4. Use of delay.

APPLICATIONS HARDWARE

No applications hardware is required for this ap-
plication. The input signal to IN1, however, must be
within voltage limits of +0 to +5 volts. It must be a
digital signal varying from a nominal 0 to over +3.0
volts for a 0 to 1, or 1 to O transition. A method for
converting a digital signal of different voltage levels
is shown in Fig. 10-12. Note that pulses are counted
for every complete transition from 0 to 1 and back
to 0 again.

THEORY OF OPERATION

The Frequency Counter (Fig. 17-5) is made up of
four sections: initialization and the processing of the
0, 1, and 2 commands (FREQ00, FREQIO, and
FREQZ20). Initialization moves the program variables
down to program RAM and then looks for the next
command input.

The FREQOO routine processes the time period
specified. A check is made for a valid input of 0 to 3
for 0.1 second, 1 second, 1 minute, or manual, re-
spectively. If a valid input is present, the variable PE-
RIOD is Joaded with 2 bytes from the period table
PTABLE. There are four entries in the period table,
one for each interval. Each entry is two bytes long.
The first byte represents the initial hundreds count,
and the next byte represents the initial seconds count.
At the start of each counting interval, these counts
are put into the HUNDS and MINS real-time-clock
locations. The real-time-clock then increments each
variable automatically. The end of the interval is de-
fined by a MINS value of 1. The entries in PTABLE
represent values that will take 0.1 second, 1 second,
or 1 minute to reach MINS = 1. The last value for
manual operation is a dummy.

160 Ez-80 PROJECTS

0092 *L.IST OFF
09999 *L.IST ON
120000 3 I I 3 9 696 I I K I KR I I I I K I I 6K I I K I I I K
10010 3 FREQUENCY COUNTER *
12020 3 D025 *
1OOZD 39553636 5 563696 96065 3696262606 36 306 36 3606 36 36 960696 36 0636 36 96063656 9606 069696 3636 06 36 96 30 6
10040
@zza 12050 ORG 220H sNEXT EPROM AREA
@220 10060 FREQR EQU 7 3START OF FRE® COUNTER
2220 318008 10@7@ L.D SPy 880H $INITIALIZE STACK
@223 214303 12080 L.D HL+ PDATA $START OF RAM DATA
Q226 B1D400 10096 LD BCs PDATAS $SIZE OF DATA
@229 Cha300 10100 CAaLL INIT sINITIALIZE
pzzC 210000 19110 FREQ?® LD H.:@ $ZERO HL.
@Q22F 220808 10120 L.D (LEDBUF) s HL $ZERO MS DISPLAY
R23z 220A08 10130 LD (LEDRUF+2) s HL $ZERO LS DISPLAY
0235 213EQ2 10140 L.D HL.s FREQT sFUNCTION TABLE ADDR
Rz38 110201 10150 LD DEs@1@2H $1 MINIMUM,@-2 VALID
@238 C31E00 18160 JP BRANCH sBRANCH QUT
Q23 18@5 1217@ FREQT JR FREGOO s0=SET TIME PERIOD
Pz240 1830 10180 JR FREQ1O 3 1=8TART COUNTING
D4z C3280A3 12199 JP FREQZ@ s2=DEFINE DEB (LAST!')
10200 ;
12210 3FREQAA.SET TIME PERIOD.
10220 3
D245 3AZ2308 10221 FREG@2 LD As (NOCHR) sGET # OF CHARS
@248 FEQZ 1@z222 cP 2 STEST FOR PROPER #
24A 2008 10223 JR NZ s FREQOA $G0O IF INCORRECT
Dz24C 3A1408 10234 LD As (INBUF+1) $GET N
@z4F FEQ4 10240 CP 4 sTEST FOR @-3
D291 FAS90Z 18250 JP Ms FREQB1 sGO0 IF 0-3
Rz54 CDIBQ@ 18260 FREQDA CALL ‘BLINK sBLINK DISPLAY
@257 18D3 14270 JR FREGI@ 5TRY AGAIN
D259 3A1408 10280 FRE@AY LD As {INBUF+1) sGET N
B25C 322708 10290 L.D (MFL.G) 1 A sMANUAL. FLAG
B2sF &F 10300 L.D l.s A sN IN L
D260 2600 10310 LD ‘Hs @ sNOIN HL
Bzb62 29 10320 ADD HL. s HL. HNE
Bz63 B13R8B3 10333 LD BCs PTABLE sPERIOD TARLE
Dzbb6 A9 18340 ADD HLsBC sADD START+N*Z
267 7E 10350 L.D Ay (HL) 5GET 1S BYTE
Dz68 322508 103460 L.D (PERIOD)sA $STORE
Qz6B 23 13373 INC HL. sPOINT TO M5 BYTE
pz6C 7E 12380 LD Ay (HL) sGET MS BYTE
Q26D 322608 183920 L.D (PERIOD+1)+A $STORE
Qz7@ 18BA 10400 JR FREQ9Q $GO FOR NEXT FUNCTION
10410 3
12420 3FRE®1I@.START COUNTING.
10438 3
Q272 AF 10440 FREGIO ~XOR A @ TO A
Q273 320408 13441 L.D (HUNDS) s A sZERO 100QTHS
Q276 320308 13442 LD {SECS) A $ZERO SECS
0279 320208 18445 L.D (MINS)s A s ZERO MINUTES
B27C 320108 10446 LD (HOURS) s A sZERO HRS
D27F 320008 1Q447 LD (DAYS) A 5 ZERO DAYS
azez 110000 10500 LD DE.Q sINITIALIZE COUNT
285 Q680 18510 LD By 8OH s MASK
pz87 210208 13520 L.D HL s MINS sPOINTER TO MINUTES
Bz2BA 3AZ608 13521 L.D As {PERIOD+1) $GET SECONDS
28D 322308 1a5z2z LD (SECS) s A 5INITIALIZE SECE
@290 3A2508 10523 .D Ay (PERIOD) SGET 100THS

Fig. 17-5. Frequency Counter/

FREQUENCY COUNTER/ TACHOMETER

161

293
Q296
@az99
2298
829D
B29F
DzAz
Qza4
B2AS
Qz2A8
BzAR
D2AD
azee
ozBz
@ze3 C2ABBZ
0286 CDZBO3
oze9 13

2zBA C39D0O2
@0zeD EB

@zBE DDz1@7@8
DzCz CD1500D
@2C5 CDhacoa
bzC8 28A8
BzCA C32C0z2
02CDh 3E10
@2CF DB@Z
@zD1 E601
@:2D3 z81D
2zD5 DeOZ
Baz2D7 AB

0zD8 CACDOZ
@zDE CD:Z803
QZDE 3E10
QZEQ DBOZ
B2ZEZ E6D1
BzE4 280C
P2E6 DROZ
A2EQ AR

@AzET CzDE@Z
PZEC CD2B03
@2EF 13

02F0 18DR
R2F2 EBR

@A2F3 DD210708
QZF7 CD1500
A2FA 21EB@3
@zZFD CDiBOO
23300 CDBCoa
2303 =2gFB
0305 C3zCez

320408
3AZT708
FEQ3
2830
CB46
CZBDa2
DE@:
AD
CASDO:
Chz28e3
CR4b
CZBD@az
DE@Z
AD

2308
2308
838D

3AZ2308
FE®@Z2
FAS402
2310 DD2114@8
2314 3A2308
Q317 47

2318 @5

@319 CDh12008

10524
10530
10540
10550
10551
1@552
10560
10570
190580
10590
10591
10592
10600
10610
10620
10630
10640
106460
18670
10680
10690
10700
107180
10720
10721
10722
10723
10724
107302
13740
10750
10760
10761
10762
10763
10764
10770
10780
10790
10800
10810
10820
10860
18870
10880
10890
190700
10910
1e9z@
10930
10960
10970
10980
19981
10932
10983
10990
11000
11010
110:0
11030

FREQ1Z2

FRE®13

FREG14

FRE®1A

FREQ1E

FRE®1ID

FRE®1C

FREGZ0.

s us e

FREGZD

LD (HUNDS) » A
LD As (MFLG)
cp 3

JR ZsFREG1A
BIT D3 (HL)

JP NZsFREG14
IN A (2)

AND B

JP Z+FRE®1Z
CALL bER

BIT Bs (HL)

JP NZsFREG14
IN As (2)

AND B

Jp NZsFREG13
CALL DEB

INC DE

Jp FREG1Z

EX DE » HL.

L.b IXsLEDBUF -1
CALL BINECD
caLl KEYSCN

JR ZsFRE®1D
Jp FREQG9D

LD As 10H

IN A (2)

AND 1

JR Z+FREGLD
IN As ()

AND B

Jp ZsFRE@1A
CALL DEBE

LD As 10H

IN Ar{2)

AND 1

JR ZsFREG1ID
IN As (2)

AND B

JP NZsFREQ1E
CALL DEB

INC DE

JR FREG®1A

EX DE s HL.

LD IXsLEDRUF—1
CALL BINBCD

LD ML+ 1000
CALL DELAY
caLL KEYSCN

JR ZsFRE®1C
Jp FREQ90
DEFINE DEBOUNCE.
LD As (NOCHR)
cP 2

Jp Ms FREGQ®A
LD IXs INBUF+1
LD As (NOCHR)
LD BsA

DEC 2

CALL. BCDBIN

SINITIALIZE 100OTHS
sGET MANUAL. FLAG
$TEST FOR MANUAL.
$G0O IF MANUAL.
sTEST DONE
5G0 IF DONE
sGET INPUT
STEST INPUT
$6G0 IF ZERO
s DEROUNCE
sTEST DONE
3GO IF DONE
sGET INPUT
sTEST INPUT
$GO IF ONE INPUT
s DERBOUNCE
sBUMP COUNT
5G0O IF NOT DONE
sCOUNT TO HL
sLED BUFFER
s CONVERT AND DISPLAY
sTEST KEY PUSH
sCONTINUE IF NONE
sKEY PUSH
sROW 4 ADDRESS
SGET INPUT
sTEST ENTER KEY
G0 IF KEY PUSH
$GET INPUT
sTEST INPUT
36O IF ZERO
s DEROUNCE
sROW 4 ALDDRESS
SGET INPUT
$TEST ENTER KEY
560 IF KEY PUSH
$GET INPUT
STEST INPUT
560 IF ONE INPUT
s DEROUNCE
sBUMP COUNT
sCONTINE
s COUNT TO HL.
sLED BUFFER
s CONVERT AND DISPLAY
51 SECOND
sDELAY
sTEST NEXT REY PUSH
sLOOP IF NONE
sG0 FOR NEXT COMMAND

INPUT

INPUT

sGET # OF CHARS
STEST #

$G0O IF INVALID
sBYPASS "2

$GET # INPUT CHARS
s TRANSFER TO B
$ADJUST FOR "2

5 CONVERT

Tachometer program listing.

162

Ez-80 PROJECTS

031C 7C 11031 L.D AsH sGET MSE
831D B7 11032 OR A sTEST
P3LE C25402 11833 JP NZ s FREGQBA 5G0O IF GT 255 MS
@a3z1 7D 11034 L.D Asl SGET DEBOUNCE VALUE
@322 322408 11240 LD {DEENC) s A sSTORE DEBROUNCE DLY
8325 C32C0z :1@5? JP FREQ9@ $G0 FOR NEW FUNCTION
1051 3

11852 3DEROUNCE SUBROUTINE

11053 3)
8328 3AZ408 11854 DER L.D As (DEBNG) sGET DEROUNCE DELAY
a3z B7 11255 OR A sTEST FOR @
B32C CB 11256 RET Z $G0O IF NO DEROUNCE
@32D &F 11057 LD L.+ A $NOW IN L
B32E 2600 11058 LD H. @ SNOW IN HL
P330 D5 11859 PUSH DE $5AVE COUNT
8331 CDigad 112602 CALL DELAY sDELAY
2334 DI 11061 POP DE SRESTORE COUNT
B335 i0zee 11062 LD HL.s MINS $RESTORE ADDRESS
B338 L8R 11063 LD By 80OH SRESTORE MASK
233A CQ 11064 RET s RETURN

11065 3

11878 $PERIOD TABLE.

11080
P33R 5A3R 11090 PTABLE DEFW 15194 $0=10THS OF SECONDS
233D 003R 11160 DEFW 15104 $1=8ECONDS
Q33F 0000 111102 DEFW @ $2=MINUTES
@341 Q0O 11120 DEFW @ 3 3=MANUAL.

11130

11140 3DATA AREA

11150
@343 11168 PDATA EQU $ $START OF PROGRAAM RAM
0343 Q0 11170 DEFB Q 3 {DEBNC)
344 200 11180 DEFW @ 5 (PERIOD)
B346 Q0 11190 DEFB @ 5 {MFL.G)

11200 s*%xxxx%%END OF LOCATIONS TO BRE PROGRAMMED %% % %% %%
A4 11218 PDATAS EqU $-PDATA sS1ZE
B8z4 11220 DEBNC EQU PROGR sLOCATION OF (DEBNC)
0825 11238 PERIOD Eaqu DEBNC+1 SLOCATION OF (PERIOD)
Qaez7 11240 MFLG EQU PERIOD+Z sLOCATION OF (MFL.G)
aldnln) 11250 END
@220 TOTAL ERRORS

Fig. 17-5 cont’d. Frequency Counter/Tachometer program listing.

The FREQ20 routine processes the debounce time
by storing it into variable DEBNC.

The FREQIO routine controls the actual counting.
First, the HUNDS and SECS variables of the real-
time clock are initialized with the value from PTABLE.
Then the input line INI is checked. Every time it
changes from 0 to 1 and from 1 to 0, the frequency
count is incremented by 1. After any change a delay is
performed based on the value of DEBNC. The MINS
count is checked for 1 if the mode is nonmanual. If
the MINS count is not 0, then the interval is not over
and a new check is made of IN1. If the MINS count
=1 (or if a key has been pressed in manual mode),
the accumulated count is displayed on the LED dis-
play. After the display the counting interval is again
entered for nonmanual operation; if manual operation

is taking place, another key push restarts keyboard
entry.

The accuracy of the counter is dependent primarily
upon the proper setting of the NMI interrupt fre-
quency. This must be adjusted accurately to give 100
cycles per second (100 hertz) for accurate frequency
counting (see Chapter 9).

No “outflow” indication is provided and the short-
est interval (1/10 second) should be used initially on
unknown frequencies to determine the appropriate
interval. Counts above 50,000 pulses per minute (833
per second or 8.3 per 1/10 second) will become in-
creasingly inaccurate as the input frequency rises.
Counts below 50,000 per second are accurate to within
*+1 count, assuming perfect NMI adjustment.

CHAPTER 18

Timer

This chapter describes the Timer application of
the EZ-80. Unlike a mechanical clock timer this
Timer allows a cycle of from 2 minutes to 100 days.
Up to six outputs can be controlled with the Timer,
which controls external devices using output lines
OUTI1-OUTS. Eighteen different “events” at eighteen
different times within the cycle may be programmed.
Reprogramming may be done at any time. To turn
on line 6 at day 23, hour 5, and minute 23 and to turn
it off at day 23, hour 5, and minute 24, for example,
the following commands would be entered:

00123052301
00223052400
3
DECIM HEX
c0 . 0 @ LOCATION 1 = 20H
COMMON LOCATION 2 = 02H
AREA
PROGRAM
{SEE CHAPTER 10)
511 1FF
512 200
544 2
0 TIMER
PROGRAM
AREA
09 o 7 LIIT OF 2758
2047 TFF LIMIT OF 2716
2048 800

{/Z22] UNPROGRAMMED AREA

Fig. 18-1. Timer memory mapping.

163

Controlling any combination of the six outputs is just
about as simple. The external devices controlled may
be sprinkler valves, solenoids, or even electrical ap-
pliances, provided the proper interface is present.

OPERATING INSTRUCTIONS

The Timer is programmed into EPROM starting
at 220H as shown in Fig. 18-1. The Timer uses most
of the 512 bytes available for program storage in
EPROM and other programs cannot be programmed
in EPROM in the 2758 version of the Timer. Set
EPROM locations 1 and 2 to 20H and 2 respectively.

The Timer has four commands (see Table 18-1).
Command “0” is of the form “OnnDDHHMMmm.”
Here “nn” is the number 00 to 17 and represents all
of 18 event definitions that can be programmed. Each
set of events must have a different nn number. DD,
HH, MM are days, hours, and minutes; each event
number must be two decimal digits such as 12. DD
may be 00 to 99, HH is 00 to 23, and MM is 00 to 59.
The mm characters are a two-digit value representing
the state of the six output lines OUT1-OUTS6, as shown
in Fig. 18-2. In programming a sequence of events
the numbers of the events need not be consecutive in

Table 18-1. Timer Commands

Command Description

Set event nn (00-17) at day = DD,
hour=HH, minute =MM, and out-
put. mm (00-63 or binary 000000-
111111). If nn = 00, define cycle.
Display event number nn (00-17)
on LED display in days, hours, min-
utes, and output value.
Kill (delete) event nn (00-17).
Start timing from DD =0, HH =0,
MM =0, with a cycle defined by
event number 0 and output as

specified by time table.

E = "ENTER”

OnnDDHHMMmmE

innE

2nnE
3E

164

Ez-80 PROJECTS

time. Fig. 18-3 shows a sequence of four events.
Lines 1 and 4 are turned on at day 1, hour 12, minute
23, and turned off at day 1, hour 12, minute 53. Lines
2 and 5 are turned on at day 1, hour 12, minute 30 and
off at day 1, hour 13, minute 0. Note that if a line is
on (or off), it must retain that state if another event
occurs during the time it is active, as shown in the
figure.

If a “0” command with event 00 is specified, the
cycle time is defined. “000010000” defines a cycle time
of one day, “000070000” defines a cycle time of one
week, and “000001200” defines a cycle time of twelve
hours, for example. At the end of a cycle, the program
starts counting again from 0 after outputting value mm.

DECIMAL VALUE OF
07063

\

BINARY VALUE OF
000000TO111111 (63)
—,—
DL 0w v
o wm
R

CELITTTT

u CONTROLS OUT 6
CONTROLS QUT 5

CONTROLS OUT 4
CONTROLS OUT 3
CONTROLS OUT 2
CONTROLS OUT 1

Fig. 18-2. Timer output coding.

Command “lnn” reads the state of even number
nn and displays it on the display as DD, pause, HH,
pause, MM, pause, and mm. As unused even numbers
are filled with a —1 value, they will display “255.” This
command allows the user to verify the events or cycle
that have been programmed.

Command “2nn” kills (deletes) the nn event pro-
gram by filling with all ones.

Command “3” starts the timer from 0 and repeats
the cycles programmed. The program continuously
tests the real-time-clock value and compares it with
all entries in the time table. If the “DDHHMM”
entry in the time table is the same as the real-time
HHMMSS value, the event definition mm is output to
lines OUT1-OUT6. A delay of one second is then
performed and another set of comparisons is done.
Comparisons and outputs are done over the entire
cycle. At the end of the cycle the real-time-clock
values are reset and the cycle repeats.

Note that for any given minute more than one set of
events can be defined but it is most efficient to in-
corporate actions for all 6 lines in one entry.

00101122336 ——
00201125318
00301123054
00401130000 }
|
~ OFF :
LIN —
El 11 0
1 1
OFF : | |
LINE : |
2 01 b0
) ! 1 i
OFF P b
LINE 3 T 7
LINE 4 OFF | E
1 00
! |
LINE 5 oF | i -
T o
[[
toy [
LINEG OFF 1 1 i I
00 0
DAY 1~
HOUR ... 12 e, 13
MIN o 0....10....20....30....40 . 50 .60

Fig. 18-3. Typical event sequence.

APPLICATIONS HARDWARE

The outputs of OUT1-OUT6 can be used to close
relays or other devices, as shown in Figs. 10-5 and
10-6. Isolate any high-voltage devices properly from
the EZ-80 circuits.

THEORY OF OPERATION

The EZ-80 Timer program (see Fig. 18-4) is made
up of six parts: initialization, four processing routines
for the commands, and a set of subroutines. The init-
ialization moves the time table (TTABLE) from
EPROM to program RAM. The time table contains
space for 18 entries of four bytes each, for a total
of 72 bytes. The initial value for all is a —1, or “un-
used.” After initialization, a JP is made to BRANCH
to get the next command.

The three subroutines are primarily to save space
in EPROM. FINDN gets the “nn” value from a com-
mand string, converts it to a binary value, and then
points IX to the proper TTABLE location. CONPUS
converts two characters from the command string
(DD, HH, MM, or mm) to binary. SEARCH searches
the TTABLE for a value of DD, HH, or MM.

TIMEOQO sets the event in the TTABLE. Subroutine
CONPUS is CALLed to get binary values for DD,
HH, MM, and mm. Subroutine FINDN finds the
location of nn. The four binary values are then put
in the entry at byte 0, byte 1, byte 2, and byte 3,
respectively.

TIMER

165

0220
2220
0220
@223
B226
azz9
ezz2C
@22F
D230
@232
@233
0238
az3p
B23E
@241
0243
Q245
@247
B24A

@24D
2250
8252
@255
2258
D23A
825C
azs60
0263
Q266
D269
024C
026F
Q272
0275
8278
ez7e
027E
ozgl
0284

2287
028A
@z8c
028F
629z
@294
D296
@az98
8z9C
027E

318008
217603
214800
Cha3oo
210000
AF
D3@a1
220808
220608
214102
110301
C31E00
180A
1842
1803
C3DAB2
c3c7ez

3AZ2308
FE@B
C24403
CD1AG3
DDES
FDE1
DDz11608
116400
CD3s6a3
FD7500
111800
CDh36@3
FD7581
113C0a
CD3683
FD7502
114000
Ch36@3
FD73@3
C3z2ce2

3AZ308
FEQ3
C24403
CD1AQ3
PEQ4
DbzB
DDES
bDD21@7@8
FDE1
FD23

2099
a7999
10000
10010
10020
100392
10040
1050
10060
10070
10080
10090
10100
10110
10111
18112
19120
10130
10140
10150
10160
10170
10130
10190
10200
10201
10210
10220
10230
102314
10232
10233
10240
18244
10248
10252
10256
10240
10264
10268
18272
10276
10280
10284
10288
10292
10296
10300
10420
10430
10440
18450
12451
10452
10453
18460
10470
10480
10450
18500
186510
10520

$ 963636 36 36 36 36 96 36 36 I 36 26 26 06 2 96 0 3 K 3 I K K6 I I I KR

#L1ST OFF
*LIST ON
3 TIMER
3 Do-06
H
ORG 22@H
TIMER EQU %
LD 5P, BBOH
LD HL s PDATA
LD BCs PDATAS
CALL INIT
TIMES®@ LD HLs @
XOR A
ouT (1)sA
LD (LEDBUF) s HL.
LD (LEDBUF+2) s HL
LD HLy TIMET
LD DE s @1@;3H
Jp BRANCH
TIMET JR TIMEGD
JR TIMEL1®
JR TIMEZA
Jp TIME3D
TIMEZ®@

TIMEZA JP

*
*

63636 36 96 36 36 3696 2 I 36 2626 3 3 26 2 2 26 3 06 9090 I I 1 H I I KKK KNI NN

$NEXT EPROM AREA
$START OF TIMER
SINITIALIZE STACK
sSTART OF RAM DATA
$SIZE OF DATA
SINITIALIZE

3ZERO HL

$ZERC A

SRESET LINES

$ZERO M8 DIGPLAY

$ZERO LS DISPLAY
sFUNCTION TABLE ADDREGS
$ 1=MINIMUM: B-3 VALID
$BRANCH OQUT

$@=5ET EVENT

5 1=READ EVENT

s@=KILL EVENT

$3=8TART (MUST BE LAST)
SLINK

$TIME®®.SET EVENT IN TTABLE.
TIME®G® LD As (NOCHR) $GET NO CHARS INPUT
CP 11 sTEST FOR PROPER #
JP NZs CON11 360 IF NOT CORRECT
CALL FINDN SFIND LOCATION
PUSH IX $TRANSFER TO 1Y
POP 1y
LD I1Xs INBUF+3 $8TART OF DAYS
()] DE» 120 SLIMIT OF 99 DAYS
CALL CONPUS 3FIND DAYS
LD (1Y)sL SETORE
LD DEs 24 $LIMIT OF 24 HOURS
CaLL CONPUS $FIND HOURS
LD (IY+1)sl $BTORE
L.D DE» 60 sLIMIT OF 59 MINUTES
CALL CONPUS $FIND MINUTES
LD (IY+2) L. sSTORE
L.D DEs &4 sLIMIT OF 63 VALUE
CALL CONPUS SFIND VALUE
LD (IY+3)sL $STORE
JP TIMERO SRETURN FOR NEXT CMND
sTIME1D.DISPLAY EVENT TABLE ENTRY.
TIME1I® LD As (NOCHR) $GET NO CHARS INPUT
cpP 3 ‘ $TEST FOR 3
JP NZ, CONi1 $G0 IF NOT CORRECT
CALL FINDN FPOINT TO ENTRY
LD Csr 4 sFOR DISPLAY OF VALUES
DEC IX $ADJUST FOR LOOP
PUSH IX $SAVE LOCATION
TIMELL LD IXs LEDBUF~1 $FOR DISPLAY
POP 1y $GET LOCATION
INC Iy sBUMP BY ONE

Fig. 18-4. Timer program listing.

166

EZ-80 PROJECTS

02AB
B2A2
QZAS
@:2A8
2:zAR
B2AE
@R
2:zB3
2zR5
@a2B6
azp9
azBC
QzeF
azca
@zCz
@z2C4

Bz2C7
e of 2}
@zcc
@2CF
B2Dh2
22D4
8zD7

B2DA
@:2DB
02DE

BZE1

BZE4
@2E7
BZEA
@2ZED
]
azF2
P2FS
B2Fb6
B2FA
@2FD
2300

e3az
@304
2305
@a3e8
e3a9
2308
@30
Q310
8312
@315
0318

231A
@31E
8320

FDES
210000
220808
220A08
FDGEDD
2600

Ch150@
3E05
?1
320808
2iF401
CD1800
@D
20Dé6
FDE1
c3zcez

3AZ308
FE@3

C2440@3
chila@3
3EFF

DD770@
C3zcez

AF
320408
320308
320288
320108
320008
CheaCoo
C22C02
2600
3A0308
6F
DD21@7@8
CD1500
CD4AD3
Z0EB

DDES
E1l
212408
B7
ED42
DD7E@3
D321
28¢8
Z1E803
CD180a
1800

DDZz11408
@602
111200

10530
10540
18550
10560
10570
10580
18590
10591
10592
18593
18600
10610
10620
10630
18640
10650
18660
10670
10680
10681
10682
18683
108690
18700
10710
10720
10730
10740
10750
10760
10770
18780
10790
10800
10810
10811
10812
10820
18824
10828
10832
108836
10920
10930
10940
10942
10943
10950
10960
18970
10990
11000
11001
11010
11020
11030
11040
11050
11060
11070
11080
11090

sTIMEZ®.

TIMEZ@

[
3

s TIME3@.

TIME3@

TIME31

PUSH Iy

LD HL.s@

L.D (LEDBUF) s HL.
LD (LEDBUF+Z) s HL.
L.D LaCIY)

LD Hs @

CAL.L. BINECD

I.D A3

5ue c

L.D (LEDRUF)s A
LD HL . 500

CALL DELAY

DEC c

JR NZ»TIMELL
POP 1Y

JP TIMEY®

KILL EVENT NN.

L.D As (NOCHR)
cp 3

JP NZs CON11
CALL FINDN

LD As QFFH
LD (IX)sA
JP TIMES®

START TIMER AND PROCESS.

SENTRY FOUND HERE.

-
k]

XOR A

L.D (HUNDS)Y s A
L.D (SECS)s A
L.D (MINS)s A
L.D (HOURS) + A
I.D {DAYS)sA
CALL KEYSCN

JP NZs TIMER@
LD Hs @&

L.D As (SECS)
LD LsA

L.D IXs LEDRBUF~1
CALL. BINECD
CaLL SEARCH

JR NZs TIME31
PUSH IX

POP HI..

LD ECs TTABLE
OR A

SBEC HL.s BC

LD As (IX+3)
ouT (1)sA

JR 2, TIMEZQ
LD Hi.+ 1000
CALL DELAY

JR TIME3]

5 SAVE

$ZERO HL

3ZERO MS DISPLAY

$ZERO LS DISPLAY

SGET VALUE FOR L

SNOW IN HL

sDISPLAY

s CONSTANT

3GET 5-B=# OF VARIABLE
sDISPLAY AT LEFT

$1/2 SECOND CONSTANT
sDELAY TO READ DISPLAY
sDECREMENT COUNT

G0 IF NOT END

SRESET STACK

$GO FOR NEXT CMND

sGET NO CHARS INPUT
STEST FOR 3

560 IF NOT CORRECT
SPOINT TO ENTRY
sDUMMY FOR NO MATCH
sRESET DAYS

SRETURN FOR NEXT CMND

3@ TO A

3ZERO 10@THS

5ZERO SECS-

$ZERO MINS

$ZERO HOURS

5ZERO DAYS
STEST KEY
;60 IF KEY
5@ TO MSRE
$GET CURRENT SECS
SNOW IN HL
sPOINT TO LED BUFFER
sDISPLAY RUNNING
$SEARCH TABLE
3GO IF NOT FOUND

$8AVE ADDRESS

$FOR COMPARE

sTABLE ADDRESS

s CLEAR CARRY

STEST FOR @TH ENTRY
SGET CONFIGURATION
$OUTPUT TO OUT1-0UTA
SSTART NEXT CYCLE
sDELAY

5ONE SECOND

5GO FOR NEXT TEST

$SUBROUTINE TO FIND NEXT ENTRY LOCATION.

FINDN

LD IXs INBUF+1
LD Bs2
LD DE, 18

5POINT TO NN
32 CHARACTERS
sLIMIT OF 17

Fig. 18-4 cont'd. Timer

TIMER

167

2323
8326
@329
@32A
@a32C
232E
332
2333
@335

0336
@338
233p
@*33D
B33E
@33F
2341
B344
0347

@344
DO34E
2351
1333
8356
7358
a35aA
@350
b360

2365
@368
2346A
@36D
0370
@371
@373
B375

2376
@376
Q378
@37
@aazc
@37E
2380
238
0384
D386
2388
B38A
238C
A38E
23°0
039z
D394

CD1200
D23EB3
ES
DDE 1
DD29
DD2%
12408
ppes
co

B602
CD1200
Joa1
€

E1l
3EFF
FD7700
CD1B2O
c3zcez

DD21 2408
110400
061z
3A0408
FE&3
ZBF9
3ADZ08
DDBE®Z
ZO0F

2 3A0108

DDEEQ]
2087
30008
DDREQD
8
DD19
10DE
ce

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

11100
11110
11120
11130
11140
11150
11160
11170
11180
1119@
11200
11210
11220
11230
11240
11260
11270
11271
11272
11280
11290
11308
11310
11320
11330
11358
11360
11361
11362
11363
113464
11365
113664
11367
11348
11369
1137@
11371
11372
11390
11400
11410
11420
11430
11448
11450
11460
11470
11480
11490
11500
11510
11520
11530
11540
11550
11560
11570
11580
11590
11600
11610

CALL.
JpP
PUSH
POP
ADD
ADD
LD
ADD
RET

BCDBIN
NCs CON1@
HL

IX

IXsIX
IXs1IX

BC: TTABLE
IXsBC

$ CONVERT TO BINARY
560 IF INVALID
$ TRANSFER TO IX

SN#*2

$N%4

sADDRESS OF TIME TABLE
$POINT TO ENTRY
sRETURN

SSUBROUTINE TO CONVERT =2 CHARS TO BINARY & PUSH.

CONPUS

CONiR

CON11

SUBROUTINE TO SEARCH TABLE FOR

SEARCH

SEARL1Q

SEAR11

-
*

iDATA

PDATA

LD
CAL.L
JR
RET
POP
LD
LD
CALL
JP

LD
LD
LD
LD
cP
JR
LD
cp
JR
1.D
CP
JR
L.D
CP
REET
ADD
DJINZ
RET

EQU

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

B2
BCDBIN
NCs CON1O@

HL.

A OFFH
(IY)sA
BLINK

TIMES@

IXs TTABLE
DEs+ 4
Bs18

A (HUNDS)
99

2y 5EARILO
As (MINS)
CIX+2)

NZ s SEARL1
Ay (HOURS)
(IX+1)
NZsSEAR11
As {DAYS)
(IX+@)

z

IXsDE
SEARLIA

52 CHARACTERS
5 CONVERT

560 IF INVALID
s RETURN

SRESET STACK
5—-1

$RESET ENTRY
SINVALID-BLINK
5GET NEXT CMND

MATCH.

s8TART OF TABLE

34 BYTES PER ENTRY
$18 ENTRIES

sGET 1/1@0THS

sTEST FOR PENDING CHANGE
SWAIT "TIL QUIET

3 CURRENT MINUTES
sCOMPARE TO TABLE
560 IF NO MATCH

$ CURRENT HOURS

s COMPARE TO TABLE
360 IF NO MATCH

$ CURRENT DAYS

s COMPARE TO TABLE
$RETURN IF MATCH
SPOINT TO NEXT ENTRY
$G0O IF NOT 18TH

5 18TH-RETURN

sSTART OF PROGRAM RAM
S(TTARLE)

program listing.

168

Ez-80 PROJECTS

0396 FFFF 11620 DEFW -1
B398 FFFF 11630 DEFW -1
B39A FFFF 11640 DEFW -1
@39C FFFF 11650 DEFW -1
@39E FFFF 11660 DEFW ~1
03A0 FFFF 11670 DEFW -1
@3AZ FFFF 11680 DEFW -1
B3A4 FFFF 11690 DEFW -1
@3A6 FFFF 11700 DEFW -1
03A8 FFFF 11710 DEFW -1
B3AA FFFF 11720 DEFW ~1
@3AC FFFF 11730 DEFW -1
O3AE FFFF 1174@ DEFW -1
O3B FFFF 11750 DEFW -1
@3Bz FFFF 11760 DEFW -1
@3B4 FFFF 11770 DEFW -1
@3B6 FFFF 11780 DEFW -1
@3R8 FFFF 11790 DEFW -1
@3BA FFFF 11800 DEFW -1
@3BC FFFF 11810 DEFW -1
11860 ;%% %%%***END OF LOCATIONS TO BE PROGRAMMED®¥¥xx*
0048 1187@ PDATAS EQU $-PDATA $SI1ZE
@824 11880 TTABLE EGU PROGR $LOCATION OF (TTABLE)
0202 11890 END
@0P0@ TOTAL ERRORS

TTABLE ENTRY 0

TTABLE +4 ENTRY 1 }
TTABLE +8 J
TTABLE +64 ENTRY 16

TTABLE +68 ENTRY 17

ENTRY FORMAT
76543210
+0 DAYS IN BINARY
+1 HOURS IN BINARY
+2 MINUTES IN BINARY
+3 OUTPUT VALUE

Fig. 18-5. Timer TTABLE.

4 BYTES/
ENTRY

Fig. 18-4 cont’d. Timer program listing.

TIMEIQ reverses the process by finding the loca-
tion of a specified entry number (FINDN) and dis-
playing the DD, HH, MM, and mm of the entry.

TIMEZ20 finds the location of a specified entry num-
ber and “kills” it by filling the entry with all ones.

TIMESO0 starts the Timer by zeroing the real-time-
clock values. It then loops continuously and scans
the Time table entries (TTABLE), comparing them
with the real-time-clock DDHHMM values. If a match
is found, the mm value for the entry is output to
OUT1-0OUTS6, and the program delays 1 second be-
fore reentering the scanning loop.

The only variable in TIME is the time table
TTABLE. It is made up of 18 entries as shown in
Fig. 18-5.

The accuracy of the Timer is dependent on the ad-
justment of the NMI signal. By using the technique
described in Chapter 9 it is possible to “fine tune” the
real-time clock to excellent accuracy for timing appli-
cations.

72 BYTES

CHAPTER 19

Music Synthesizer

This chapter describes a Music Synthesizer appli-
cation of the EZ-80. We have seen in previous chap-
ters how audio could be generated by toggling one
output line between 1 and 0 at a constant rate. Such
an implementation, however, produces only a constant
tone at constant volume. The Music Synthesizer de-
scribed here has the capability of producing four
octaves of frequencies from high C down to lowest
C or approximately 65 to 956 hertz in 12 steps per
octave (C, Ct, D, D¢, E, F, F§, G, G§, A, Af, and
B). Notes may be Y, %, %,, %, or whole notes, or
even dotted values (half again as long). Quarter and
half rests are also implemented.

Other parameters that may be varied are tempo,
loudness, and envelope. Tempo, of course, is the
speed of the music, and may be set at 80, 110, or 130
beats per minute. Loudness may be set to soft, me-
dium, or loud at any time. The envelope of the note
may also be varied according to four patterns, as
shown in Fig. 19-1. The “Normal” envelope is a note
of constant volume as determined by the current
“loudness” setting. The “Stacatto” envelope is a note
of short duration. The “Triangle Down” envelope pro-
duces a “pinging” or harpsichordlike sound. The “Tri-
angle Up” envelope produces the reverse type of
sound. The ability to vary the loudness and envelope
is the thing that sets the Music Synthesizer applica-
tion apart from simple tone generators.

Another feature of the Synthesizer is the ability to
repeat any section of the song as many times as re-
quired. The “song” is made up of four bits, or nibbles
(nibls). An example of a typical song is the sequence
13,2,12,12,0,0,2,4,0,4,2,13,1,7,13,2,0,0, 2,
4, 12, 8,0, 12, 10, 13, 1, 11, 15, which plays part of
Yankee Doodle. By introducing “repeat” codes, the
song may be repeated five times 14, 5 (sequence) 14,
0. The repeats may be put anywhere within the song.

An “editor” allows songs to be entered into RAM
or to be displayed one nibl at a time. Songs may be
entered into RAM, but may also be burned into

169

EPROM if the user desires. This application is some-
what longer than the typical EZ-80 application and
requires a 2716 EPROM. The area available for user
songs.in EPROM is about 750 bytes. Each byte holds
about 1% notes, permitting about 1100 notes in
EPROM or 100 notes in RAM, not counting repeats.
Songs may be “debugged” in RAM and then coded
into EPROM if the user desires.

OPERATING INSTRUCTIONS

The codes for the Music Synthesizer are shown in
Chart 19-1. Each code consists of one or two 4-bit
nibls. A note is defined by one nibl, but the duration
of a note is defined by two nibls, a “12” plus a code
for the duration (whole, ¥, etc.). Once the duration
has been defined, every note will be of that duration
until the duration is redefined. For example, 12, 12, 0,
2 12, 14, 0, 2 represents % duration (12, 12), a
¥C, a %D, % duration (12, 14), a %C, and %D.

The octave is set by a “13” code. (13,0) sets the
lowest octave, (13,1) the next highest, (13,2) the
middle C octave, and (13,3) the high C octave. As

| .”.IHH”L NORMAL ENVELOPE
il STACATTO ENVELOPE
__.dﬂ'l."“."."mm_ TRIANGLE UP
.Immumlmrh TRIANGLE DOWN

Fig. 19-1. Music Synthesizer envelopes.

170

Ez-80 PROJECTS

Chart 19-1. Music Synthesizer Codes

Notes
C
Ct
D
D%
E
F
F3
G
G
A
At
B
Note Duration
Whole
1/2¢
1/2
1/4
1/4
1/8¢
1/8
1/16
Octaves
0 (low)
1
2
3 (high)

S ON-=O

—“ 2 OO ~NOO;

0
1

12,0
12,4
12,8
12,10
12,12
12,13
12,14
12,15

13,0
13,1
13,2
13,3

Envelope
Normal
Staccatto
Triangle Up
Triangle Down
Tempo
80 beats/minute
110 beats/minute
130 beats/minute
Loudness
Soft
Medium
Loud
Rests
1/4
1/2
Repeat
Repeat n times
End repeat
End Song

13,4
13,5
13,6
13,7

13,8
13,9
13,10

13,11
13,12
13,13

13,14
13,15

14,n
14,0
15

in the case of duration, the octave is in force until

redefined.

The envelope is set by a “13” code with a 4-7 argu-
ment. (13,4), (13,5), (13,6), and (13,7) set “Nor-
mal,” “Staccatto,” “Triangle Up,” and “Triangle
Down” envelopes. The envelope is modified by the
current “loudness” setting to generate one of 12 en-

velopes.

Tempo is set by a “13” code with an 8-10 argument
that sets 80, 110, or 130 beats per minute, respectively.

Table 19-1. Music Synthesizer Commands

Command

Description

OE

1nnE

2E

3nnnnE

Play music starting at current location

defined.

Set data nn (0~15) into current nibl de-
fined by location counter. Increment
location counter by one after store of

data.
Display nibl at current location.

In-

crement location counter by one after
access. Keep display until next key
push. Entering an “ENTER" will dis-
play next nibl.
Set nib! location counter to the byte de-
fined by the quotient of (nnnn/2) and
the nibl defined by the remainder of
(nnnn/2). nnnn may be 0-4351 (byte
0 nibl O to byte 87F nibl 1).

E = "ENTER"

DECIMAL HEX
0 0

511 1FF
512 200
544 220
1023 3FF
1024 400
2047 TFF
2048 800

COMMON
AREA
PROGRAM

(SEE CHAPTER 10)

MUSIC SYNTHESIZER
PROGRAM AREA

_______ [
|

EPROM SONG
STORAGE AREA

l

E LOCATION 1 = 20H
LOCATION 2 = 02H

LIMIT OF 2758

LIMIT OF 2716

(/ZZZ4 UNPROGRAMMED AREA
Fig. 19-2. Music Synthesizer memory mapping.

2K
ouT 1 A
1K AUDIO
2K OUTPUT
ouT 2 AN _[___»
2K % 1K
0uT 3 AMA-
% i
2K
ouT 4 AN %
2K 1K
ouT5 MV
- 1K
ouT6 AN

|,L'___AvAvA

NOTE: ALL RESISTORS 1/8W OR GREATER

Fig. 19-3. Music Synthesizer output.

<—— 3FH LEVEL
(63)

<——— (0H LEVEL

Fig. 19-4. Music Synthesizer loudness control.

MUSIC SYNTHESIZER

171

6220
D220
ez
@223
B2zé
D229
azzC
@Az2F
Bz32
D235

238
az3e
23k
D240
dz4z
Q244
Bz47

240

@z4D
Bz4n
Q250
B253
D254
0258
@58
BZ3E
0z5F
D262
Q265
D266
azéA
@26D
Bz&E
@az70
0273
A274
D275
0278
B279
@z7C
Pz7D
Qz7F
pzae
Bz83
0284
2287
0288

318008
212605
11100
CDa30a
210000
220808
2z0A08
213E@z
110200
CI1ERD
18@D

1805

1806

C3ERO3
C3467@3
C3R003

CHAD4
Fza9es
5
DDZ17E@4
CDZARG
3AZEQS
47
CD3804
N el 1
Fi
DD2192604
CDZAR4
EH
D604
CD38G4
Di

EB
JAZFOB
47
CD4204
E5
B&s03
CD3BA4
Di

ER
342808
47

R4

20099
89999
10020
10810
10020
10030
10040
10850
10060
10070
10080
10070
10100
12110
10120
10130
10140
12150
10168
12178
13180
10190
12200
10210
10220
12230
18240
10250
10260
10270
16280
10290
10300
10310
10320
10330
10340
10350
193460
10370
10380
10420
10430

*LIST OFF

*L.IST ON

HEI ST EIIILTILIEL LA LA LS L LE L LS R R LS L L L LT R L]

e ww v um

MUSC

MUSCY@

MUSCT

MUSCE 1
MUSCRBZ

-
?

sMUSCR0.

MUSCR0
MUSCaz

10440

19450
10460
10470
10480
10450
10500
10510
10520
10530

10540
12556
10571
18571

MUSIC SYNTHESIZOR

DO-04
ORG 220K
Eau +
LD 5P, 880H
LD HL.1 PDATA
LD ECs PDATAS
CALL INIT
LD HL.» @
LD (LLEDBUF) « HL
LD (LEDBUF+2) s HL.
L.D HLs MUSCT
L.D DE » B8003H
Jp BRANCH
JR MUSCOR
JR MUSCREL
JR MUSCEZ
JP MUSC30
JP MUGSCI@
JP MUSCZ@
PLAY MUSIC
EqU 3
CALL HALF
JF Ps MUSCB6
PUSH AF
LD IXsFRE®T
CALL. GETDSP
LD A (OCT)
L.D By A
CALL. SHIFT
L.D (FRE®) s ML
POP AF
L.D IXsDURT
CALL. GETDSF
PUSH HL.
LD B4
CALL GHIFT
FOP DE
EX DEsHL.
L.D As {NDUR)
L.0D By
CALL. SUBT
PUSH Hi.
L.D B 3
CALL SHIFT
POP DE
EX DE s Hi..
LD Ay (TEMP)
LD By A
INC Bx

*
*

EXTET SIS ST LSS T AL L LSS LS L L RS E LRk LL gk]

$NEXT EPROM AREA
$START OF MUSIC SYNTH
sINITIALIZE STACK
$START OF RAM DATA
s8I1ZE OF DATA
SINITIALIZE

$ZERO HL

$ZERO LEFT DIGITS
$ZERO RIGHT DIGITS
$FUNCTION TABLE ADDR
$@=MINIMUM, B-3 VALID
$BRANCH OUT

s@=PLAY MUSIC

$51=8ET DATA
$2=DISPLAY DATA
$3=8ET LOCN COUNTER

SGET 4 BITS

GO IF NOT NOTE

3BAVE NOTE

sFREG TABLE ADDRESS
$GET FREQUENCY

SGET OCTAVE #
$TRANSFER TO B

$GHIFT RIGHT

sGAVE FREG FOR PLAY
$RESTORE NOTE
sDURATION TAB ADDR
$GET DURATION

$SAVE RESULT

3FOR 1/16TH

5GET 1/16TH

sGET 16/16THS
$DE=1/16THyHL.=1&6/16THS
3GET NOTE DURATION
s TRANSFER TO B
$SURT DE FROM HL B
$8AVE RESULT

$FOR 1/8

sGET 1/8

sGET 8/8
$DE=1/8+HL=8/8
5GET TEMPO

s TRANSFER TO B
sBUMP CODE

TIMES

Fig. 19-5. Music Synthesizer program listing.

172

Ez-80 PROJECTS

289
2z8A
az28C
QZ8E
Q291
@aze3
D294
Q=299
@29A
az9c
@290
A2TE
azal
BzA4
Qa7

P2AT
@2AB
PzAD
BB
D23
DZB6
0ZP8
RZBA
@ZBD
BZBF
RzCz
BZCS
028
DZCA
@zCD
DZCF
BzDZ
@2D3

D6
@zD7
0zD8
Q2D
DZDA
@2DB
PZDC
@2DD
@ZDE
@ZDF
VZE1

ZE4
DZES
BZES
BZEP:
BZED
DZF@
B2FZ
0ZFS

2FB
BZFA

B7
200z
[rraxh 1]
CD4z@4
2603
CD38R4
JAZEDR
47
JEG3
4]

47
CD3804
223008
CD4RR4
18A4

FERC
2009
CDOT04
3Z2E08
C34DDZ
FE@D
206C
CDOID4
FE@4
FzCe0:
322E08
C34D02
FE@S
TZEROSD
D6BA
323408
47
3A2708
a7
a7
BO
47
a7
@7
27
80
4F
B60O0
Z1PAD4
029
222908
C34D0Z
FEDE.
F2ZF80:z
D&OS
322808
C34D0OZ
FE@E
F20803

1R572
10573
12374
18580
13390
184600
13682
12404
10606
10s@7
10608
10609
18610
18620
10625
10630
12648
12650
106460
18670
10680
10690
1a720
1a710
10720
18730
108740
18750
18760
18770
10780
18798
12800
128a1
ig810
12820
10830
12840
10850
12835
12860
10878
12880
10885
10892
10900
10210
10920
10930
10942
10950
10760
10965
10970
10980
109790
11000

MUBC@3

T e e us

uscaé

MUSCA7

MUSCRY

MUSCAR

MUSCAL

MUSCAZ

OR
JR
LD
CALL
L.D
CALL.
L.D
LD
1.D
SUR
LD
CAL.L
L.D
CalLl.
JR

NOT NOTE HERE

CP
JR
CAL.L.
L.D
JP
cP
JR
CALL
cP
JP
L.D
JP
CP
JP
sue
LD
LD
LD
RL.CA
RL.CA
OR
L.D
RL.CA
RL.CA
RL.CA
ADD
L.D
LD
LD
ADD
LD
JP
CP
JP
SUB
LD
JP
CP
JF

A

NZ s MUSCR3
Bs@

sueT

Bs3

SHIFT

As {OCT)
B

A3

B

BiA

SHIFT
(DURA) » HL.
NOTE
MUSCOD

1z
NZ:MUSCAa7
HALF
{(NDUR) 1 A
MUSCOR

13

NZ s MUSCA4
HALF

4

Py MUSCOS
(OCT) A
MUSCOR

8
PsMUSCAL
4
(ENVT) 1A
Esh

Al (LOUD)

B
ByA

AR

Cs A

B,@
HLsETAR
HL.s BC
(ENVP) s HL
MUSCO0
11
PsMUSCAZ
8
(TEMP) s A
MUSCOR
14

s MUSCAS3

sTEST FOR 8@ CPM
36O IF MORE

sFOR 8@ CPM

;8UBT DE FROM HL @s2s@R 3 T.
$FOR 1/8

5GET 1/8

sGET OCTAVE #
$TRANSFER TO B
sFOR 8SUBT

§3-0CTH

$BETUP FOR GHIFT
3GHIFT RIGHT
$8AVE FOR PLAY
$PLAY NOTE

5 CONTINUE

STEST FOR NOTE DURATION
5GO IF NOT DURATION
$GET ARGUMENT
$8TORE

360 FOR NEXT NOTE
STEST FOR QCTsENVs TEMPS LOUD
3GO IF 14 OR 15
SGET ARGUMENT

$TEST FOR OCTAVE
5GO IF NOT OCTAVE
$STORE OCTAVE #

GO FOR NEXT NOTE
sTEST FOR ENVELOPE
5GO IF NOT ENVELOPE
SENVELOPE NOW 8-3
$SAVE ENVELOPE TYPE
$SAVE

sLOUDNESS 8-2
sLOUD*2

5L.0UD*4

SNOW LL-EE @ TO 11
SHASH* 1

sHASH*Z

FHASH*4

sHAGH*E

sHASH*9

SNOW IN C

SNOW IN BC

$START OF ENVELOPE TAB
SPOINT TO ENVELOPE
$SAVE FOR OQUTPUT
5G0 FOR NEXT NOTE
$TEST FOR TEMPO

3GO IF MNOT TEMPO
$ADJUST

sSTORE TEMPO

$GO FOR NEXT NOTE
sTEST FOR LOUDNESS
560 IF NOT LOUDNESS

Fig. 19-5 cont'd. Music

MUSIC SYNTHESIZER

173

@2FD
QZFF
a3az
@385
a3e8
238A
@308
2306E
A30F
2310
2311
2312
B314
0318
B31A
831D
a32@
2323
0326
o328
a32e
B3ZE
@32F
2331
@334
B335
8338
233e
233k
0340
@342
0345
@347
8349
2344
234D
2350
8353
2356
8359
@35A
835C
@35D
8360
0363
Q364
B365

@367
D36A
034E
@371
@37z
0373
0376
0378
e37e

D&OE
322708
3A3408
C3DZ02
D&OE
47
342808
07

80

27

4F
0600
DDZ1AEQ4
DDR9
DD&4EQ®
DD&6D1
CD1800
C34D02
FE@F
CAZCOZ
CDO904
B7
201F
3AZD0B
3D
322D08
CA4DB2Z
ZAZRBB
CB3C
CBAD
222408
3E0D
3001
3¢
322608
C34D0z
322D08
2A2408
362608
B7
2007
29
222808
C34D02
29

23
18F6

111000
DD211408
3AZ308
47

@5
CD1200
3806
CD1BOO
C32C0z

11010
11020
11025
11026
11048
110650
11060
11070
11280
11085
11098
11100
11118
1112@
11130
11140
11150
11160
11170
111680
11198
11200
11210
11220
11230
11240
11250
11260
11270
11280
11290
11300
11310
113:z@
11338
11340
11356
11360
11370
11380
11390
11400
11420
114306
11450
11455
11460
1147@
11480
11490
11500
1151@
11520
11538
11540
11550
11360
11570

MUSCAZ3

MUSCA4

MUSCASL

MUSCAS

MUSCA7

MUSCAB

iMUGC1@.

MUSC10
MUSCL1

SUB i1 $NOW B8-2

LD (LOUD) s A $8TORE LOUDNESS

LD As (ENVT) SGET ENVELOPE TYPE
JP MUSCAD 560 FOR NEW ENVELOPE
suUB 14 $REST ARG NOW @ OR 1
LD BsA $SAVE ARG

LD Ay (TEMP) $GET TEMP

RL.CA $SHIFT LEFT ONE

ADD AR $MERGE REST

RLCA

L.D CrA sHASH IN C

L.D Bs@ sHASH IN BC

LD IXs RTABLE $REST TABLE

ADD IXsBC sPOINT TO REST ENTRY
LD Ls (IX) sGET LS BYTE

L.D Hs (IX+1) $GET MS BYTE

CALL DELAY sDELAY FOR REST

JP MUSCa0 $60 FOR NEXT NOTE
cpP 13 $TEST FOR END

JP Z1MUSCY@ 3G0O IF END

CAL.L HALF $GET ARGUMENT

OR A STEST FOR ZERO

JR NZ s MUSCAS $GO IF NOT ZERO

LD As (RPTOC) 3GET REPEAT COUNT
DEC A $DECREMENT BY 1

LD {(RPTC): A $8TORE FOR NEXT

JP Z+MUSCOn $G0 IF DONE

LD HLs (RADD) $REPEAT ADDRESS

SRL H SSHIFT RIGHT 1

RR L

LD (PNTR) s HL SRESET POINTER

LD AsD 0 TO A

JR NCs MUSCAL 5G0O IF ZERO CARRY
INC A 311 TO A

LD (NIBL)sA $8TORE NIBL CODE

JP MUSCR@ 560 FOR NEXT NOTE
LD (RPTC)s A $STORE REPEAT COUNT
LD HL s (PNTR) sGET CURRENT PNTR
LD Ay (NIBL) SGET NIBL POINTER
OR A $TEST FOR @

JR NZ s MUSCAB $GO IF 1

ADD HL s HL sADDR%Z

LD (RADD) s Hl. $SAVE FOR REPEAT

JP MUSCR@ $GO FOR NEXT NOTE
ADD HL.» HL $ADDR*:2

INC HL. sNIBL

JR MUSCA7 5G0 TO STORE

SET LOCATION TO SPECIFIED DATA

LD DE»1é s MAXTMUM

L.D IXs INBUF+1 $8TART OF DATA

L.D As (NOCHR) $GET # OF CHARS INPUT
L.D EBrA SMOVE TO B

DEC B $ADJUST FOR FUNCTION CODE
CaLL BCDEBIN 5 CONVERT

JR CsMUSCL2 560 IF OK

CALL BLINK SOVER LIMIT-BLINK
JP MUSCY0 GO FOR NEXT FUNCTION

Synthesizer program listing.

174

EZ-80 PROJECTS

- B3F1

A37E
o3gz
2385 EEO1
0387 322608
@384 DD7EQQ
238D 2811
B38F E&LOF
0391 CB25
Q393 CB2Z5
8395 CBIS
@397 CR:ES
0379 B3
239A DD770@
@39D C3zCoz
A3A0 E&FO
B3AZ BS
@3A3 DD7700
B3Ab6 2AZ4QB
B3A9 23
D3AA 222408
@3AD C3zCoz

DD2A2408
JAz608

a3ee
@a3p3
Q3ps
@a3e8
azerp
@a38cC
@3RE
@a.3Co
a3ce
@A3C4
@a3co6
23cs
@a3cA
a3ce
B3CE
@3CF
@3D1
@3D5
23D8
@3DB
@3DD

2AZ4DB
3A2608
EE®1
322608
7E
280a
CR3F
Ca3rF
CB3F
CR3F
1806
E&@F
23
222408
6F
2600
DDzi@708
Ch1500
chacoa
28FR
c3zcez

B3ER
Q3E3
R3E7
B3EA
@A3ER
@3EC
@3EF

110011
DDZ114@8
3AZ308
47

25
CD1200
3806
CD1B0®
C32COz
CR3C

B3F 4
a3F7

11580
11590
11600
11612
11620
11630
11640
11650
11668
11670
11680
11690
11702
11710
11720
11730
11740
11750
11760
11770
11780
11790 3
11800 3
11810 3
11820 MUSCZO
11830

118408

11850

11840

11870

11880

11890

11900

11910

11920

11938 MUSCZ21
11940
11950
11960
11970
11980
11990
12000
12010
12020
12038 3

12040 3MUSC30.
1205@ 3
120640
12872
1:280
12899
12100
12110
12130
12130
12140
12150

MUGSCL2

MUSC13

MUGCZ2@.

MUSCzz

MUSC25

MUSC30

MUSC31

OR
L.D
L.D
INC
L.D
JP

DISPLAY

LD
L.D
XOR
LD
LD
JR
SRL
SRL
SRL.
SRL.
JR
AND
INC
L.D
LD
L.D
LD
CALL.
CAL.L.
JR
JP

IXs (PNTR)
As (NIBL)
1
(NIBL)s A
As (IX)
Z:MUSC13
aFH

L

L

L

I

L

(IX)sA
MUSCT0
2rFaH

L

(IX)sA

HL s (PNTR)
HL
(PNTR) s HL
MUSC90

SGET CURRENT LOCATION
sGET NIBL POINTER
sFLIP

SSTORE FOR NEXT

JGET VALUE

5G0O IF SECOND
SMAGK OUT LS NIBL
SLEFT JUSTIFY NIBL

sMERGE NEW DATA
$6TORE MERGED RESULT
$GET NEXT COMMAND
SMASK OUT MS NIBL
SMERGE NEW DATA
5ETORE MERGED RESULT
SGET CURRENT LOCATION
$BUMP BY 1

$STORE

SGET NEXT COMMAND

CURRENT LOCATION,

HL. s {PNTR)
As (NIBL)
i
(NIBL) s A
As (HL.)
ZsMUSCZ]
A

A

A

A

MUsCz2z
OFH

HL.
{PNTR) s HL.
LiA

Hs @

IXs LEDRBUF~1
BINBCD
KEYSCN
ZyMUSCES
MUSC0

SET LOCATION COUNTER.

LD
LD
L.D
LD
DEC
CAaLL
JR
CAL.L.
JP
SRL

DEs 4352
IXs INBUF+1
As (NOCHR)
BsA

B

BCDEBIN
CsMUSC31
BLINK
MUSCo0

H

$GET CURRENT LOCATION
5GET NIBL POINTER
sFLIP

5STORE FOR NEXT

sGET BYTE

GO IF SECOND

sRIGHT JUSTIFY VALUE

$GO FOR STORE

sGET NIBL

sBUMP POINTER

$STORE

sNOW IN L

$NOW IN HL

sLED BUFFER

5CONVERT AND DISPLAY
sTEST KEY PUSH
5G0 IF NONE

SGET NEXT COMMAND

5 {RAM+1) %2

sSTART OF DATA

$GET # OF CHARS INPUT
SMOVE TO B

$ADJUST FOR FUNCTION CODE

5 CONVERT

3GO IF OK

SOVER LIMIT-BLINK

60 FOR NEXT FUNCTION
sFIND BYTE LOCATION

Fig. 19-5 cont’d. Music

MUSIC SYNTHESIZER

175

Q3F9
@a3Fe
B3FE
2400
0482
B403
@406

Ce1iD
222408
3EGD
3001
3C
322608
c3zCR2

2409
a40c
B40F
2411
2414
@415
0417
2419
Q418
@41D
@41F
@421
R423
D424
R427
0427

2A2408
3A2608
EED1
3226088
7E
280A
CR3F
CB3F
CR3F
CB3F
1806
E&OF
23
222408
FEBC
ce

Q42A
@42C
242D
B42F
0431
D434
8437

cez7
4F
0600
DDOY
DD6EDD
DD&6@1
co

0438
@437
@43A
Q438
243D
B43F
0441

0442
0443
B444
@445
D44b
0448
B44A

78
B7
c8
B7
EDS2
10FB
co

12160
12165
12170
12180
12190
12200
12210
12220
12230
12240
12250
12260
12270
12280
12290
12300
12310
12320
12330
12340
12350
12360
12370
12380
12390
12400
12410
12420
12430
12440
12450
124460
12470
12480
12490
12508
12510
12520
12530
12540
12550
12360
12570
12580
125909
12600
124610
12620
126308
12640
12650
126460
1266462
12664
12670
12680
12720
12730

MUSC32

3
k3

RR L

LD (PNTR) s HL
LD AsQ

JR NCsMUSC32
INC A

LD (NIBL.)sA

JP MUSCP0

sBY SHIFT OF HL
3SET PNTR

30 TO A

$GO IF C=0

51 TO A

5@ OR 1 TO NIBL
3GET NEXT COMMAND

sHALF.SURROUTINE TO GET 4 BIT NIBL.

HALF

HALF1@

HALFZ0

$GETDSP.

GETDSP

LD HLs {(PNTR)
LD As (NIBL)
XOR 1

LD (NIBL) A
LD As (HL)

JR ZsHALF1@
SRL A

SRL A

SRL A

SRL A

JR HALF 2@
AND oFH

INC HL

LD (PNTR) s HL
cpP 12

RET

SUBROUTINE TO GET ENTRY

SLA A

LD CsaA

LD Bs@

ADD IXsBC
LD Ls (IX)
LD Hs (IX+1)
RET

$GET CURRENT LOC
sGET NIBL POINTER

SFLIP
$GET BYTE
GO IF ZND HALF

s CONTINUE

$GET 4 BITS
sBUMP PNTR
$RESTORE

sTEST FOR NOTE
$RETURN

FOR = BYTE ENTRY TABLE.

SN*Z

sNOW IN C

sNOW IN BC
$POINT TO ENTRY
sGET LS VALUE
sGET M5 VALUE
3RETURN

$SHIFT.SUBROUTINE TO SHIFT HL RIGHT B TIMES.

SHIFT

SHIF1

-
9

LD AsE
OR A
RET z

SRL H

RR L
DJINZ SHIF1
RET

SUBRT. SUBROUTINE TO SUBTRACT DE

suBT

suR:z@

»
k]

LD AsE
OR A

RET Z

OR A

sBC HL s DE
DJINZ SURZ0
RET

$COUNT TO A

$TEST FOR ZERO
$RETURN IF ZERO
$SET C

$8HIFT IN C
SCONTINUE N TIMES
$ RETURN

FROM HL B TIMES.

$TRANSFER CNT TO A
sTEST FOR ZERO
$RETURN IF ZERO

@ TO C

$HL-DE TO HL

$3GO IF MORE
$RETURN

sNOTE. SUBROUTINE TO PLAY ONE NOTE.

Synthesizer program listing.

176

Ez-80 PROJECTS

R44R
Q44F
Q452
45646
0459
Bansa
R45R
R45E
B45F
D462
D463
Q4465
D46
Q449
@B46C
D446D
BasF
@471
Q472
Q475
@477
@474
v47C

B47E
D480
@482
Q484

@486
2488

D48A
@48C
B48E
Q420
@a49z
B494

R496
3498
B494A
@49
R49E
D4A0
Q4A2
D4A4L
B4AsL
D4AB
Q4hA
D4AC

DDZAZ908
LIFFFF
FDZA3008
DD7EQQ
BA

c8
2A3z208
2B
DD7EQ®
2F

D301

19

DALS B4
2A3208
R

3EFF
D301

19

DA7 1084
FD1%
DASRDB4
DD23
18D4

6781
3301
3F@1
2F@1
1801
eBa1

Feae
EFB30
E300
D32
C700
BROA@

C705
1806
6F RS
CBOSL
ZB07
9007
FEO?
6AD8
EQDE
5A09
DYBY
610A

12740
12750
12765
12767
12770
12780
12798
12800
1:810
12820
12825
126830
12840
12850
12860
12870
12880
12890
12900
12910
12920
12930
12940
12950
12960
12978
12980
1z299@
13000
13010
13020
130306
13040
13050
13060
13070
13080
13090
131008
13110
13120
13130
13140
13150
13160
13170
13180
13190
13200
13210
13220
13230
13240
13250
13260
13270
13280
13290

NOTE

LOOPE

LOGPA

LOOP1

LD
LD
LD
LD
cP
RET
LD
DEC
LD
CPL
ouT
ADD
JP
LD
DEC
L.D
QUT
ADD
JP
ADD
JP
INC
JR

IXs (ENVP)
DEs -1

1Ys (DURA)
Al (IX)

D

Z

HL s (FREQ)
HL.

As (IX)

(1)sA
HL.» DE
CsLOOP1
HL.y (FRE®)
HL

A+ BFFH
(1)s4A
HL.» DE

Cs LOOPZ
IY+DE
CaLLOOPA
IX
LOOPR

sGET PNTR TO ENVELOPE
5FOR DECREMENT
sDURATION OF ONE SEGMENT
sGET ENVELOPE VALUE
sTEST FOR ~1
3GO IF 8TH
SFRE®@ COUNT
$ADJUST FOR JP C
sVALUE
$ INVERT FOR QUTPUT
sOQUTPUT
$—-1 TO COUNT
3L.OOP HERE
SFREQ COUNT
$ADJUST FOR JP C
;0
sOUTPUT
51 TO COUNT
sLOOP HERE
$DECREMENT DURATION
360 FOR DURATION
sBUMP ENVELOPE PNTR
360 FOR NEXT SEGMENT

SFREQUENCY TABLE.OPTIMIZED FOR MIDDLE C.

k]

FREQT

$DURATION TABLE,

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

5IN COUNTS.

DURT

SREST

.
>

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

TABLE.

359
339
319
303
=83
267
251
239
227
211
199
187

sC
3C 5H
;D
5D SH
sE
5F
sF SH
3G
3G 8H
A
A BH
3B

DURATION OF WHOLE NOTES

1479
1560
1647
1739
16535
1936
2043
2154
2272
2394
521
2657

sC
5C 8H
sD
3D SH
SE
3F
3F SH
3G
;6 SH
5A
A SH
5B

Fig. 19-5 cont'd. Music

MUSIC SYNTHESIZER

177

D4AE
V4B
R4BZ
04B4
D4Eb
D4B8

D4RA
@488
D4RC
@4BD
B4PE
B4BF
24Co
B4C1
B4acs
@B4C3
B4CH
@4CS
B4Cé
D4C7
B4cs
4C9
B4CA
D4CB
@4CC
@4CD
R4CE
D4CF
24D@
@4D1
04Dz
@403
B4D4
@4D5
B4D6
@4D7
B4D8
Q409
@4DA
@408
@4DC
@4DD
@4DE
Q4DF
Q4ED
Q4E1
B4EZ
D4E3
D4E4
D4ES
B4ES
B4E7
R4EB
Q4E?

EEB:
DCAs
580
BRas
F401
E803

13308 RTARLE
13310

13320

13330

13340

13350

133608 3

13370 3ENVELOPE TABLE.

133380 3
1339@ ETARE
13400
13410
13420
13430
13440
13450
13460
13470
13480
13490
13500
13510
13520
13530
13540
13550
1356@
13578
13580
13590
13600
13610
13620
13630
13640
13650
13660
13670
13680
134690
13700
13710
13720
13730
1374@
13750
13768
13770
13780
13790
13800
13810
13820
13830
13840
13850
13860

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

DEFE
DEFB
DEFBE
DEFB
DEFE
DEFB
DEFB
DEFE
DEFE
DEFB
DEFB
DEFB
DEFR
DEFB
DEFE
DEFB
DEFE
DEFB
DEFE
DEFB
DEFE
DEFR
DEFB
DEFB
DEFE
DEFB
DEFB
DEFB
DEFE
DEFB
DEFB
DEFBE
DEFB
DEFR
DEFB
DEFRB
DEFB
DEFB
DEFR
DEFB
DEFE
DEFE
DEFB
DEFB
DEFR
DEFBE
DEFBE
DEFB

75@
1508
&0
1200
500
1006

4 AT

23H
@3H

@3H
A3H
A3H

@FFH
B3H
@3H
A3H

sSEsee

s
3
R
T

SSS*—‘M#UO‘%SSO‘W#MHS
n
X

180 CPMs1/4
580 CPMy1/2
5100 CPMs1/4
310@ CPMs1/2
5120 CPMs1/4
5120 CPMs1/2
SOFTs4 AT MEDs4 AT LOUD.

5 SOF T+ NORMAL

$SOF T STACCATO

$SOFTy TRIANGLE UP

$SOF T TRIANGLE DOWN

$MEDIUMs NORMAL.

$MEDIUM.STACCATO

Synthesizer program listing.

178

Ez-80 PROJECTS

B4EA
Q4ER
B4EC
@4ED
D4EE
B4EF
D4F D
D4F 1
D4F
@4F3
R4F 4
D4FS
Q4F &
@4F7
R4F 8
B4FP
D4FA
D4FR
B4FC
D4FD
D4FE
O4FF
0500
@501
050z
2503
0504
0505
2506
@507
0508
2509
2504
P58
os50C
@5@D
050E
250F
2510
B511
251z
2513
2514
@515

@516
@517

0318
@519
@514A
2518
@51¢C
251D
@51k

@51F .

2520

. @521

@asz2
@523

13870
13980
13890
13900
13910
13920
13930
13940
13950
13960
13970
13980
1399@
14000
14810
14020
14030
14040
14050
14860
14070
14080
14090
14100
14110
14120
14130
14140
14150
14160
14170
14180
14199
14200
14210
14220
14230
14240
14250
14260
14270
14280
14290
14300

14310
14320

14330
14340
14350
14360
14370
14380
14390
14400
14410
14420
14430
14440

DEFB
DEFB
DEFR
DEFB
DEFE
DEFBR
DEFE
DEFE
DEFE
DEFB
DEFE
DEFB
DEFE
DEFE
DEFE
DEFB
DEFE
DEFE
DEFB
DEFB
DEFBE
DEFB
DEFE
DEFB
DEFB
DEFB
DEFE
DEFE
DEFR
DEFB
DEFE
DEFB
DEFE
DEFB
DEFB
DEFB
DEFE
DEFB
DEFB
DEFB
DEFE
DEFE
DEFR
DEFB
DEFB
DEFB
DEFE
DEFB
DEFE
DEFB
DEFE
DEFB
DEFRE
DEFB
DEFE
DEFB
DEFE
DEFB

FFH

VEeNIPUENIEESINISINB RS SRER

$MEDIUMs TRIANGLE UP

SMEDIUMs TRIANGLE DOWN

sLOUDs NORMAL

SLOUD s STACCATO

;LOUDs TRIANGLE UP

sLOUDs TRIANGLE DOWN

Fig. 19-5 cont'd. Music Synthesizer program listing.

MUSIC SYNTHESIZER

179

2524 Q0 14450 DEFB 4]
@525 FF 14460 DEFB @FFH

14470 3DATA AREA

144808 3
B526 14498 PDATA EQU % $START OF PROGRAM RAM
0526 000G 14500 DEFW)] 5 (PNTR)
2528 00 14510 DEFE @ 5(NIBL)
P529 @0 14520 DEFB] 3 (L.OUD)
@52zA 00 14530 DEFB] s (TEMP)
@52B BAD4 14540 DEFW ETAR 3 (ENVP)
252D 0000 14550 DEFW 2 s {RADD)
@52F 00 14560 DEFB @ $(RPTO)
2530 20 14570 DEFE @ 5(0OCT)
@531 08 14580 DEFB "4 5 {(NDUR)
0532 00OG 14590 DEFW @ : {DURA)
@534 2GR0 14600 DEFW @ 3 (FRE®)
@534 00 14605 DEFB] s (ENVT)

14610 sx%x%%%%END OF LOCATIONS TO BE PROGRAMMED® %% &% %%
0211 14620 PDATAS EQU $-PDATA $8IZE.

14630 3

1464@ 3EPROM MUSIC CAN START HERE

14650 3
0824 14668 PNTR EQU PROGR sLOCATION OF (PNTR)
2826 14678 NIBL EQU PNTR+2 sLOCATION OF (NIBL)
e8z7 14680 LOUD EQU NIBL+1 sLOCATION OF (LOUD)
28z8 14690 TEMP EQU LOUD+1 SLOCATION OF (TEMP)
0829 14708 ENVP EQU TEMP+1 sLOCATION OF (ENVP)
o8z8 1471@ RADD EQU ENVP+2 sLOCATION OF (RADD)
282D 14720 RPTC Eau RADD+2 sLOCATION OF (RPTC)
a82E 14730 OCT EQU RPTC+1 sLOCATION OF (OQCT)
0B2F 14740 NDUR EQU OCT+1 sLOCATION OF (NDUR)
2830 14750 DURA EQU NDUR+1 sLOCATION OF (DURA)
83z 14760 FRE® EQU DURA+Z $LOCATION OF (FRE®)
2834 14765 ENVT EQU FREGQ+2 SLOCATION OF (ENVT)
2200 1477@ END
00020 TOTAL ERRORS

Fig. 19-5 cont'd. Music Synthesizer program listing.

Loudness is set by a “13” code with an 11-13 argu-
ment that sets soft, medium, or loud.

Rests are set by a “13” code with an argument of
14 (% rest) or 15 (% rest).

All “12” and “13” type codes define conditions that
remain in force until redefined, and do not have to be
(and should not be) redefined for each note.

Repeats are defined by “14” type codes. The repeat
is set by a “14” code with an argument of 1 to 15.
The next location after the repeat codes is saved as
the starting location to be repeated. A “14” code with
a zero argument marks the end of the repeat sequence.
The repeat sequence will be repeated for the number

of times defined in the first argument.

The last code is a “15,” marking the end of the
song and returning control to the command input
routine.

When the Music Synthesizer is first powered up or
reset, there are four commands that may be entered
as shown in Table 19-1. The “3nnn” command sets
a location counter for entering, displaying, or playing
song data. The location counter is set to “nnn,” which
is a decimal number representing the EPROM or
RAM address of the data. This address, however, is
the address of the nibl and is therefore twice the
size of the normal RAM/EPROM address, as each

180 EZ-80 PROJECTS

1K 2 —
RESISTOR !
NETWORK | I
I AUDIO OUT TO
|/ Aubio PLFIR PLAYING WITH ARYING
— SEE FIGS. 10-8,10-
(OR EXTERNAOLS 109 AMPLITUDE OF SEGMENTS
AMPLIFIER
(SEE FIG. 14-2)
2K O - N o ; ~u: w P~
RESISTOR E=es==25%5 £
NETWORK £ 52z :2¢2 =2 2
(4] fa-2 [l < W@ W o (o)
I R R R S~ I R
TO EZ-80
GROUND Fig. 19-8. Envelope generation.
by the proper location counter address. Return is
made to command input when the Synthesizer en-
0uts counters a “15” or end code.
NOTES: ouT8 The Music Synthesizer is programmed into 2716

ALL CONNECTIONS WIRE-WRAPPED.

EPROM as shown in Fig. 19-2 and starts at location
BOTTOM VIEW OF DIP SOCKETS.

Fig. 19-6. Music Synthesizer construction.

byte contains two 4-bit nibls. The left-hand nibl is
designed “0” and the right-hand nibl is designated
“1.” Location 4225 specifies byte 4225/2 = 2112 (840H
in RAM) and the remainder of 1 indicates nibl 1 at lo-
cation 2112.

Command “Inn” sets data defining the song into
RAM. The location counter must have previously been
set to a valid RAM/nibl location. The value nn may
be 0-15 and defines a code shown in Chart 19-1. The
location counter will automatically be incremented
to the next nibl after the entry is made.

Command “2” displays data in the current RAM
or EPROM location. The current location counter
must have previously been set to the desired mem-
ory/nibl location. Pressing any key ends the display
and allows input of the next command. Pressing
“ENTER” displays sequential locations, automatically
incrementing to the next for each display. This mode
allows the user to examine music codes for validity.

Command “0” starts execution of the song specified
by the current location counter. The song may be in
RAM or in EPROM at the user’s choice. Multiple
songs may be stored in RAM or EPROM and specified

ON OFF

“nMEﬂ“nME"

LOOP 1 | LOOP 2
CONTROL | CONTROL

PERIOD OF
te—— DESIRED ——=
FREQUENCY

Fig. 19-7. Frequency generation.

220H. Set EPROM locations 1 and 2 to 20H and 2
respectively.

APPLICATIONS HARDWARE

The Music Synthesizer uses OUT1-OUT6 as out-
puts to a resistor ladder network as shown in Fig.
19-3. This ladder network is a digital-to-analog con-
verter that converts a 6-bit digital value to an analog
signal level. The maximum signal level is about 3.5
volts for an output of 111111. Half of that level is
011111. Each bit represents about 3.5 volts/64, or
0.055 volt, and the output is approximately linear over
the range of voltages.

Loudness (or envelope) is controlled by varying
the digital output values to OUT1-OUTS, The greater
the digital value output, the louder the signal will be.
For a “normal” note with a “loud” output, the level
will be either 0 or maximum, as shown in Fig. 19-4.
Medium and soft result in lowered value outputs.
Using different envelope patterns results in varying
levels, and therefore varying waveshapes. The user is
urged to modify the envelope tables in the program to
create his or her own patterns.

The output of the ladder network can be fed into
the audio amplifier described in Chapter 10 or into
an external amplifier. The suggested physical layout
for this application is shown in Fig. 19-6.

THEORY OF OPERATION

The heart of the Music Synthesizer (Fig. 19-5) is
a subroutine called “NOTE.” NOTE consists of four
loops. The innermost two loops (ILOOPI and LOOP2)
turn on the output lines and then turn off the output
lines for a precise period. The time that the lines are
on and off correspond to the frequency of the note

MUSIC SYNTHESIZER

181

desired. Variable FREQ contains a count that is decre-
mented by 1 each time through LOOP1 (on loop) or
LOOP2 (off loop) to create a (relatively) precise
on/off time that matches the period of the frequency
desired (see Fig. 19-7).

One cycle of a note would not be audible, so there
is an outer loop (LOOPA) that counts how many
cycles should be output. As the period of each note
varies with the frequency of the note, this count is
different for every frequency. It is put into variable
DURA before the NOTE subroutine is called. LOOPA
outputs approximately the correct number of cycles
for the frequency of the note (which depends upon
the note value and the octave) and the duration of
the note (which depends upon the note duration and
tempo).

To produce varying envelopes, the values defining
different points on the envelope must be accessed and
output. LOOPB performs this function. Every en-
velope is defined by eight segments on the envelope,
as shown in Fig. 19-8. LOOPA outputs exactly one-
eighth the duration of the note and then LOOPB gets
the next envelope value to be used during the “ON”
portion of output. A —1 value defines the end of
the envelope. The proper envelope has been previ-
ously defined before NOTE is called and variable
ENVP points to its location.

When a song is to be played, routine MUSCO00 is
entered. MUSCO0 gets a nibl from the song data area.
Much of the processing in MUSCO (from MUSCO06
on) is to process “non-note” nibls. This involves get-
ting the next argument and storing it in variables such
as LOUD (loudness), NDUR (note duration), OCT
(octave), ENVP (envelope pointer), TEMP (tempo),
RPTC (repeat count), and RADD (repeat address).
During this code some processing is done to store
the variables in convenient form for the NOTE sub-
routine to minimize the “overhead” for playing a
note.

When a note is to be played in MUSCO00, the proper
frequency count is obtained from the frequency table

(FREQT) and modified by the octave number. The
frequency table holds the proper count for all notes
of the lowest octave. This count is halved for each
octave above the lowest. The result is stored in FREQ
for the NOTE subroutine.

The second portion of playing a note in MUSCO00
involves figuring out the duration count to be stored
in DURA. A value from the duration table (DURT)
is obtained based upon the note to be played. This
is halved for every octave below the highest. This
result is then adjusted for the number of 16ths in the
note (NDUR), and then adjusted further for the
tempo (TEMP). The result is divided by eight (for
the eight segments) and stored in DURA.

Whew! Subroutine NOTE is then called to play
the note.

The remainder of the Music Synthesizer is made
up of the editor portion to access or change data to
be played and subroutines. MUSC10, MUSC20, and
MUSC30 operate similarly to the Microcomputer
Educator in setting a location counter, displaying data
based upon the location counter, or storing data to the
current location. Location (NIBL), however, contains
the current nibl position (0 or 1) and these routines
operate in nibl addressing, display, and entry rather
than in byte fashion.

Subroutine HALF obtains the current nibl based
upon the byte pointer (PNTR) and nibl pointer
(NIBL). The 4 bits are right justified to produce a
value of 0-15 for ease in handling.

Subroutine SHIFT shifts the HL register right the
number of times specified by the count in the B regis-
ter. Subroutine SUBT subtracts the contents of DE
from HL the number of times specified by the count
in the B register.

Many of the variables have already been mentioned.
The Rest Table RTABLE specifies a delay count based
on the current tempo (TEMP) and rest value (% or
%). The Envelope Table (ETAB) contains eight
values for the eight segments of the envelope plus a
terminating value of —1.

CHAPTER 20

Blue Sky Projects

The preceding chapters have presented some in-
teresting applications for a dedicated inexpensive
microcomputer such as the EZ-80. In this chapter
we'll discuss some other possible applications—ones
which we will not implement here, but that are cer-
tainly well within the realm of possibility. These fall
roughly into three areas: other EZ-80 control appli-
cations, distributed processing, and intelligent con-
troller applications.

OTHER EZ-80 CONTROL APPLICATIONS

The EZ-80 can be used to control a variety of out-
puts, as we have seen in previous chapters. The relay
described in the applications will handle up to 125
watts, or may be used to drive still other relays or
solid-state electronics to control virtually any slow-
speed control application such as lights, motors, sole-
noids, and appliances. All of these applications are
“discrete” outputs—the output is either off or on.

The outputs of the EZ-80 may be converted to an
analog signal by a digital to analog (dac) converter.
The simplest form of this is described in Chapter 19
for the Music Synthesizer, where a ladder network is
used to implement a dac whose output varies from
0 to 3.5 volts. The same scheme may be used to con-
trol external devices that require analog voltages,
such as small dc motors. An analog amplifier will
have to be used between the output of the dac and
the control application to provide more drive capa-
bility and a voltage level conversion.

Inputs for control applications are a major problem
because of the noise present on input lines for even
short runs of several feet. In the Burglar Alarm appli-
cation we bypassed the problem by using relay inputs
where the relay contacts were physically close to the
EZ-80. There are many approaches to solving the
noise problem for inputs. The one we'll discuss here
is differential line drivers/receivers.

Differential line drivers and receivers are devices
for generating and detecting digital signals over

lines that run up to hundreds of feet. They are highly
immune to line noise, can operate at high frequencies,
and provide a high current drive capability. A com-
munication system using twisted pair is shown in Fig.
20-1. The 8820 device is a dual differential receiver
and the 8830 device is a dual differential driver. They
are interconnected by a twisted pair line. The twisted
pair line is simply that—two pieces of wire twisted
around each other to give approximately known im-
pedance and noise cancellation effects. The 8820 and
8830 devices can be used on the EZ-80 by the setup
shown in Fig. 20-2. One set of twisted pair must be
run for each input or output to the EZ-80.

What about analog inputs to a computer such as
the EZ-80? It is very convenient to have a microcom-
puter measure analog inputs that represent external
conditions such as temperature, humidity, speed,
and others. Commercial analog-to-digital converters
(adcs) are available for this function, but they are
generally somewhat expensive. Simple schemes for
implementing an adc usually incorporate a program-
mable dac and a comparator, as shown in Fig. 20-3.
The dac is programmed a step at a time (or in bi-
nary fashion, halving the remaining range each time)
until the corresponding input analog voltage is
matched. The scheme we’ll consider here, though,
relies on pulse generation.

The pulse generator adc is shown in Fig. 20-4. It
uses an external resistance or voltage as an analog
of a real world signal, such as temperature or hu-
midity. There are many available transducers that
convert external parameters into resistance or volt-
age; the converted resistance or voltage is then sup-
plied to the MC4024 device as a voltage. The MC4024
outputs a square wave whose frequency is (approxi-
mately) linearly dependent upon the input control
voltage. The square wave output is fed into one of
the input lines IN1-IN5 of the EZ-80. By measuring
the time interval between pulses, the frequency of the
MC4042 can be determined, the control voltage value
can be derived, and the analog value, such as tem-

182

BLUE SKY PROJECTS

183

Vee Vee
OuTPUT
I 14 4 ﬁlzi
1 3 8
2 Y2 2 Y,
INPUT "TWISTED PAIR”
3] 8830 8820
7 g JT L] 5
LINE \ l 1 _.L
T T !
DIFFERENTIAL DIFFERENTIAL
LINE DRIVER LINE RECEIVER

Fig. 20-1. Differential line drivers/receivers.

wrl o % b TYPICALLY

o0UT 6 8830 / 8820

UP TO SEVERAL
HUNDRED FEET

(A) Output from EZ-80 to remote receiver.

+5 Vdc
l/ 1
INS A— GROUND
UP TO SEVERAL
HUNDRED FEET

(B) Input to EZ-80 from remote receiver.
Fig. 20-2, EZ-80 differential system.

INPUT LINE
00R1
MCRO- | oipet COMPARATOR
COMPUTER OUTPUT
| oo mce N
~—1 T0 ANALOG
6 CONVERTER COMPARATOR
LINES 0 IF DAC
VOLTAGE <
INPUT INPUT; 1 IF >
VOLTAGE
DIGITAL COMPARATOR
TRY OUTPUT OUTPUT DESCRIPTION
1 100000 0 .INPUT VOLTAGE NOT 32-63
HALVE 0-31 RANGE
2 010000 0 INPUT NOT 16-31
HALVE 0-15 RANGE
3 001000 1 INPUT 8-15
HALVE 8-15
4 001100 0 INPUT NOT 12-15
HALVE 8-11 RANGE
5 001001 0 INPUT NOT 9-10
INPUT MUST BE 8

Fig. 20-3. Analog to digital conversion.

perature, may be found. In general, the conversion
from time interval and analog value is a simple divide
of the form:

4 VOLTSFOR "1~
0 VOLTSFOR "0~

Ve
THERMISTOR OR TRANSDUCER WHOSE
10K RESISTANCE CHANGES WITH TEMPERATURE,

NOMINAL & PRESSURE, ETC.
y PERIOD 1 PERIOD 2
10K i 10 MS 5 MS
2 1h14 ML Lrin

3 —— T0 IN1-IN5
_[MC4024

g

3 uF FOR 100 Hz

.3 pF FOR 1000 Hz s 17
.03 uF FOR 10000 Hz

Fig. 20-4. Pulse generator adc.

k

1 1 = . .1
analog value time interval

where k is a constant value.
The circuitry shown in Fig. 20-4 can be used to

monitor analog inputs such as room temperature, wind
speed, light intensity, humidity, and others if the
suitable transducer is used and a linear portion of the
frequency curve is chosen.

DISTRIBUTED PROCESSING

The EZ-80 was designed to be inexpensive and to
use readily available parts. It therefore lends itself to
parallel processing of the form shown in Fig. 20-5.
In this case each EZ-80 can perform its own dedi-
cated function and a master EZ-80 can communicate

PROCESSING RESULTS

COMMANDS | ~MaSTER"

EZ-80

| RESPONSE

DATA TO BE{PROCESSED

PERIPHERAL
EZ-80

PERIPHERAL |
i EZ-80]

| |
!

Fig. 20-5. Distributed processing using EZ-80s.

184

Ez-80 PROJECTS

"DATA AVAILABLE” —— NI
o0uT 2 IN1
o) IN2
our 4 —
ouT 5 — N4
"MASTER”] 1 %DATA_. “PERIPHERAL"
EZ-80 N1 < "ACKNOWLEDGE ouT 2 o0uT 2 EZ-80
N2 A OUT31 oyt 3
IN3 B ouT4] oir e
IN4 i OuT S 0uT 5
il 0UT 6
IN6)J ouT 6
DATA <—
INL
IN2
IN3
IN4
INS -pERIPHERAL "
EZ-80
ouT 2
ouT 3
ouT 4
oUT 5
ouT 6

Fig. 20-6. EZ-80 bus for distributed processing.

with the others to monitor the system in general. The
network of microcomputers can be physically close
and working in parallel to process parts of the same
problem, or they can be physically far apart in a
control system. The peripheral processors may require
no keyboard or LED displays and this will reduce
their cost significantly.

How do the cpus communicate in such a system?
Two approaches are presented here, one in which the
processors are physically close, and a second in which
they are a relatively long distance apart.

In the case of processors that are close together,
we can create a “bus” as shown in Fig. 20-6. Output
lines OUT2-OUTS6 of the master go out to all input
lines IN1-IN5 of each peripheral processor. Output
lines OUT3-OUT6 are used to pass 4 bits of data
from the master to a peripheral processor. Output
line OUT2 from the master is a “data available” line
to indicate there is data on lines OUT3-OUT6 from
the master which is to be read in by the peripheral.
Master output lines OUT3-OUTS are read in by each
peripheral processor on input lines IN2-IN5. Master
output line OUT2 is read in by each peripheral proc-
essor on line INL.

Data sent from a peripheral processor is sent over
peripheral lines OUT3-OUT6. These lines go to
master input lines IN2-IN5. An “acknowledge sig-
nal” from a microprocessor is sent out from periph-
eral line OUT2 and is read in from master line IN1.
A slight modification must be performed for each
peripheral processor. Pins 15 and 8 of each peripheral

74368 must be tied to pin 24 of the 8255 (PB6). These
pins are the “enable” for the 74368. When data is not
being sent from the peripheral to the master, PB6
must be a 0 so that outputs OUT2-OUTS do not cause
conflict with other outputs on the same bus. Putting
PB6 in a O state effectively removes the outputs of
the 74368 from the bus by putting it in a “high-im-
pedance” (disconnected) state.

To pass data from a master to a peripheral, the
following steps are performed:

1. Master puts address of peripheral on lines
OUT3-0UT6 (0-15).

2. Master puts 1 on line OUT2.

3. Every peripheral processor is periodically test-
ing master line OUT2 (its input line IN1) for
a 1. If a 0 is present, it continues whatever it was
doing. If a 1 is present, it reads in the address
on lines master OUT3-OUT8 (its input lines
IN2-IN5).

4. If the input address is the same as its address,
the peripheral processor outputs a 1 on periph-
eral line OUT2 (master input line IN1) by writ-
ing a 1 to PB4 and PB6, It leaves a 1 there until
it detects a 0 on master OUT2 (IN1).

5. The master looks for a 1 on its IN1 (peripheral
OUT2). As soon as it receives the “acknowledge,”
it puts a 0 on master OUT2,

6. Now the master has notified the peripheral that
it is about to send a command and received an
acknowledgement from the peripheral processor.
The master now sends a 4-bit command in the
same fashion as Steps 1-5. The commands may be
that more data is to be sent from the master to
the peripheral or that data is to be sent from
peripheral to master. The master and peripheral
use four lines (master OUT3-OUTS, peripheral
IN2-IN5) to transfer data from master to periph-
eral and four other lines to transfer data from
peripheral to master (master IN2-IN5 and pe-
ripheral OUT3-OUT6). Master lines OUT2 is
used as a “data available” line and peripheral line
OUT2 is used as an “acknowledge” line in the
transfers.

Data can be sent in 4-bit segments fairly rapidly
using this protocol, on the order of 25,000 bytes per
second. All communication is initiated by the master
with the addressed peripheral responding. Interpe-
ripheral communication may be done through the
master. Such distributed processing could provide a
means to “number-crunch” data on one processor,
while another performed control functions. It is a
way to parallel a number of tasks on different proc-
€ssors.

BLUE SKY PROJECTS

185

T MOST
"BIT TIME"
SIGNFIANT SIGNIFICANT
DATA BIT DATA BIT
= LTI
/- 8 DATA BITS - /
0 = START BIT orORaa 1= STOP BT

Fig. 20-7. Serlal data format.

In the case of distributed processors that are sep-
arated by some distance, a similar scheme could be
used if twisted-pair differential drivers/receivers were
employed (with some modification to the circuitry
previously shown). However, a more feasible ap-
proach is to use a double-twisted pair, one pair for
sending data and one pair for receiving data. Data
would be sent in serial fashion as a bit stream rather
than as 4 bits at a time. In this case each master
output line of OUT2-OUT6 would be dedicated as a
differential driver and each master input line IN1-IN5
as a differential receiver. The possible five peripheral
processors would be addressed by outputting on the
appropriate line and receiving data on the appro-
priate input line.

Data sent in serial fashion can follow the some-
what standard conventions used in data communica-
tions, a start bit, 8 data bits, and a stop bit, as shown
in Fig. 20-7. Each output is on or off for one bit time.
Standard bit times range from 10 milliseconds to 100
microseconds. A good value to use would be on the
order of 200 microseconds. Each 8-bit value sent out
would take 2 milliseconds to send in this case. A 0
(start) would be output, followed by 8 data bits
(least significant bit first), followed by a 1 (stop) bit.
Each peripheral processor would be monitoring the
input line from the master looking for a 0 bit, and

24 INPUT/QUTPUT
LINES MAY BE CONFIGURED
IN MANY COMBINATIONS

T /

BLINESPAT7 —PAO
MAY BE ALL INPUT OR ALL OUTPUT

8255 4 LINES PC7 — PCA
] MAY BE ALL INPUT OR ALL OUTPUT

] 4 LINES PC3 — PCO
MAY BE ALL INPUT OR ALL OUTPUT

8 LINES PB7 — PBO
MAY BE ALL INPUT OR ALL OUTPUT

Fig. 20-8. Reconfiguring the 8255 i/o lines.

Table 20-1. 8255 Configuration Codes

Contro! Word

Lines 80H 82H 81H 83H 88H 8AH 89H 8BH
PA7-PAC out out out out out out out out
PC7-PC4 out out out out in in in in
PC3-PCO out out in in out out in in
PB7-PB0O out in out in out in out in

Lines 90H 92H 91H 93H 98H 9AH 99H 9BH
PA7-PAQ in in in in in in in in
PC7-PC4 out out out out in in in in
PC3-PCO out out in in out out in in
PB7-PBO out in out in out in out in

then reading in the following bit stream by delaying
one bit time and reading in at 200-microsecond in-
tervals. Commands sent by the master would be sim-
ilar to the commands described above.

INTELLIGENT CONTROLLER APPLICATIONS

Stripped of keyboard and display, the EZ-80 makes
a good intelligent controller for a computer system,
with 1K or 2K of EPROM and 128 bytes of RAM.
The 24 lines from the 8255 may be used to receive
data from an S-100 or other computer system, as
shown in Fig. 20-8 and Table 20-1, to process the data,
and to transmit it to a printer or other peripheral.
Conversely, the EZ-80 may receive data from a pe-
ripheral, buffer it, process it, and then send it on to
the controlling computer system. Data may be trans-
ferred at rates of up to 50,000 bytes per second when
the EZ-80 is used in this type of application.

As a typical example of such a use, Fig. 20-9 shows
an EZ-80 used as a Morse Code Translator/Sender in
a ham radio application. The EZ-80 receives the audio
and translates from code to ASCII characters. The
main computer periodically requests new characters
from the EZ-80 and handles logging the message on

OTHER

MONITOR DISK PERIPHERALS

MAIN
COMPUTER

ASC11 CHARACTERS
DECODED FROM

ASC11 CHARACTERS
TO BE TRANSMITTED

TRANSCEIVER AUDIO
AUDIO AMATEUR
EZ80 RADIO
KEYER TRANSCEIVER

Fig. 20-9. Morse Code Translator/Sender.

186

EZ-80 PROJECTS

disk, looking for previous contacts with the station,
printing the received message, and so forth. When
messages are to be sent, the main computer passes a
message in ASCII, which is then translated by the
EZ-80 into code. .

The preceding applications are perfectly feasible.
To use a hackneyed phrase, the applications for such
a microcomputer are limited only by the reader’s

imagination. While the constraints of 2K bytes of
EPROM and 128 bytes of RAM do put somewhat
more of a limit than imagination on projects of this
type, there are many, many projects that can be de-
signed and implemented on a microcomputer such as
the EZ-80. The author hopes that you will be moti-
vated enough by the projects in this book to consider
trying some of your own.

Appendices

APPENDIX A

Binary Operations

TO CONVERT FROM DECIMAL TO BINARY

. Divide decimal by 2. Save remainder:

25 RO
250
. Repeat until zero remains:
12 R1 6RO 3RO 1Rl ORIL
225 212 26 2B 2o

. Arrange remainders in reverse order (last to first):
110010
. This is equivalent binary number:

].100].02 = 5010

TO CONVERT FROM BINARY TO DECIMAL

. Take first binary digit and multiply by 2:

110010
N1x2=2

. Add to next binary digit:

110010
NXITx2=2+1=3

. Repeat for remainder of binary digits:

1X2:m1:25x2:50+0:50

. The result is the equivalent binary number.

TO ADD TWO BINARY NUMBERS
. Adding 0+ 0=0, adding 0+ 1=1, adding 1 +1=0

with a carry, adding 1 + 1 + carry = 1 with a carry. -

. Start from right as in decimal addition and add
with carries.

189

1.

8]

' 10010 = 18
+11110 = 30
110000 = 48

TO SUBTRACT TWO BINARY NUMBERS

Subtracting 0 — 0 =0, subtracting 1 —0=1, sub-
tracting 0 —1=1 with a borrow, subtracting
1-1=0.

. Start from right as in decimal subtraction and

subtract with borrows:

11010 =26
—01111 =15
1011 =11

SIGNED BINARY NUMBERS (TWOS
COMPLEMENT)

. Most significant bit is sign. If msb = 0, number is +,

if msb = 1, number is negative.

01111111 is positive, 10101010 is negative

. If positive number, convert remainder to decimal:

01111111

|

s .,

+ 127

. If negative number, change all ones to zeros and

all zeros to one:

10101010

01010101

Add one: 101(11010

190

APPENDIX A

01010101
+1

01010110

Now convert all but sign bit to decimal and add
minus sign:

10101010

01010101
+1

01010110

\

N

— 86

TO ADD SIGNED BINARY NUMBERS
1. Add as in simple addition:

01010100 = +84
+10101010 = —86

11111110 = — 2

2. Convert result:

11111110

00000001
+1

00000010

\

-2

APPENDIX B

Hexadecimal Operations

TO CONVERT FROM BINARY TO HEX
1. Group binary number into groups of four digits:

1010.1010-1111.1011
2. Convert each 4-digit group as follows:

Binary Hexadecimal
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

HEH IO P © 010 Uts WD —O

1010:1010:1111.1011
w

l
A A F B

TO CONVERT FROM HEX TO BINARY

1. Convert each hex digit to a binary four-bit group

as above:

A32F

ANNN

1010 0011 0010 1111

TO CONVERT FROM DECIMAL TO HEX
1. Divide hex by 16. Save remainder:

191

77 R2
16/1234

. Repeat until 0 remains:

4 R13
16[77

0 R4
16]4

. Arrange remainders in reverse order (last to first):

4132

. Convert to hex digits:

4132

4 D2

. This is equivalent hexadecimal number:

4D2H = 1234

TO CONVERT FROM HEX TO DECIMAL

. Take first hex digit and multiply by 16:

4D2H

\

4x 16 =64

. Add to next hex digit:

4D2H

4xX16=64+13="77

. Repeat for remainder of hexadecimal digits:

4D2H

4X16=64+13=T77 X 16 =1232 4 2 =1234

. The result is the equivalent binary number.

BINARY

80000020
20000881
80000010
200006011
gocea 100
eooo0101
20200110
@0800111
60001000
800061001
20001810
90001011
20001100
200011081
20001119
08021111
20016088
00010081
20018618
20010011
00810100
80010101
20012110
e0010111
90811000
80811001
‘eso110180
20011811
20011100
82011101
90011118
goo11111
201008000
201008001
281008010
00120011
0061002100
201808101
80100110
es108111
80191000
201061001
es101810
801810811
20101128
20101101
eg101110
@2101111
96118000
@0110001
201180810

DEC

11
eol
@2
ae3
é0a
ees
eee6
887
208
229
ele
ell
12
213
614
g1s

217
218
219
e28

822
823
024
225
226
9217
@28
829
632
231
@32
233
834
935
936
8317
238
839
o4p
gal
842
843
244
245
ga6
aa1
Bas8
a9
050

APPENDIX C

Conversion Tables for Decimal 0-255

BINARY

gol110a11}
00112108
ee118191
62118118
es118111
90111000
es111001
es111810
dollldll
og111100
eagi1118l
ee1111180
eatitlll
Pl1000000
gleoeacsl
210002018
910008011
210080100
g1002101
glecol1e
gleealtl
oleoleep
olooleal
61001818
glesletl
g1001100
o1081101
e1001118
21881111
2101098080
oiel1eenl
glolesie
e1e10811
glo10100
g1210101
21210110
g1giglll
61011808
e18110601
gielie1e
gl1e11e11l
eleiilee
610111081
ote11110
81011111
81180000
81100001
glio00018
211202211
21102100
811001081

DEC

851
@s2
8s3
854
@5s
856
257
ess
259
660
o6l
ge62
963
664
065
266
867
068

272

271

872
873
674
817s
276
2177
2178
679
080
881
@82
@83
284
a8s
086
287
g8s
289
898
291
892
093
894
295
896
897
98
899
102
181

193

BINARY

o11060110
e1168111
21101600
g11e61001
el11plo10
e1101911
él11e11080
e1191181
gi1e1110
g1101111
él111e000
ol118081
él11ie010
gl1i16011
g1110108
81110101
e1116110
21118111
61111080
ot111001
81111610
21111811
él111100
el111101
81111118
grin
18200000
10808001
10000010
10600011
108002100
100060101
102006119
10800111
100010088
100061081
108810818
iooa1811
18001160
160021101
10601110
18821111
lés100680
198106801
182108180
108169211
12010109
18210101
198108110
1810111

DEC

182
183
164
185
166
1807

189
118
111
112
113
114

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
148
141

192
143
134
145
1a¢
147
148

149

150

151

194

APPENDIX C

BINARY DEC HEX BINARY DEC HEX BINARY DEC HEX
10611088 152 98 18111018 186 BA 11811101 22f DD
12811883 153 99 1e111e11 187 BB 1181111é 222 ©DE
legl1e18 1S4 9A 16111188 188 BC 11811111 223 DF
1ge11811 155 9B 16111181 189 BD 11100080 224 E@
12011188 156 9C 16111118 198 BE 11100801 225 EI
12811181 157 9D 12111111 191 BF 11108618 226 E2
16911112 158 9E 11820028 192 CB 11128811 227 E3
18611111 159 O9F 118808821 193 C} 111281286 228 E4&
12100008 168 A2 11288818 194 C2 11182181 229 ES
1100981 161 Al 11888811 195 €3 11188119 236 E6
18192016 162 A2 11886188 196 Ca 111806111 231 E7
16180811 163 A3 11@e2181 197 €S 11181888 232 E8
18180160 164 AA 112228118 198 Cé6 11131001 233 E9
le1o8181 165 AS 110060111 199 C7 111201018 234 EA
10168118 166 A6 112010088 200 (8 11181011 235 EB
121808111 167 A7 11801881 201 C9 11161188 236 EC
12181888 168 A8 112012818 202 CA 11181181 237 ED
10101601 169 A9 118610811 203 CB 111611186 238 EE
10181018 178 AA 11861180 284 CC 1118111t 239 EF
18181811 171 AB 11801181 285 CD 111180680 2408 FO
12101188 172 AC 11081118 286 CE 11110663 241 Fil
19181181 173 AD 11681111 207 CF 11110818 242 F2
10181118 174 AE 11016082 208 D@ 11118811 243 F3
18181111 175 AF 11210081 209 DI 11112100 244 Fa
161108006 176 BO 11818018 218 D2 11119181 24% FS
16118801 177 Bl 1110211 211 D3 11118118 246 F6
111818 178 B2 11816108 212 D4 11110111 247 F171
18110011 179 B3 11810181 213 BS 11111668 248 F8
16116108 188 Ba 11018118 214 D6 11111881 249 F9
18118181 181 BS 11818111 215 D7 11111818 258 FA
16116112 182 B6 118112086 216 D8 11111811 251 FB
18116111 183 B7 11611861 217 D9 11111188 252 FC
12111808 184 B8 1111818 218 DA 11111181 253 FD
181118681 185 B9 11811811 219 DB 11111118 254 FE

lietiies 226 DC 11111111 255 FF

APPENDIX D

Z-80 Instruction Set

A Register Operations

Complement CPL
Decimal DAA
Negate NEG

Adding/Subtracting Two 8-Bit Numbers

A and Another Register
ADC Ar SBC Ay
ADD Axr SUB Ar
A and Immediate Operand
ADC An SBC An
ADD An SUB An
A and Memory Operand
ADC A,(HL) ADD A,(HL)
ADC A,(IX+d) ADD A,(IX+4d)
ADC A,(IY4d) ADD A,(IY+d)

Adding/Subtracting Two 16-Bit Numbers
HL and Another Register Pair
ADC HL,ss ADD HL,ss SBC HL,ss
IX and Another Register Pair
ADD IX,pp ADD IY,rr

SBC (HL)
SBC (IX4d)
SBC (IY+d)

SUB (HL)
SUB (IX4d)
SUB (IY+d)

Bit Instructions

Test Bit
Register
Memory

Reset Bit
Register
Memory

Set Bit
Register
Memory

BIT b,r
BIT b,(HL) BIT b,(IX+4d) BIT b,(IY+)
RES b,r
RES b,(HL) RES b,(IX4d) RES b,(IY+4d)
SET b,rr
SET b,(HL) SET b,(IX4+d) SET b,(IY4d)

Carry Flag

Complement CCF
Set SCF

Compare Two 8-Bit Operands
A and Another Register CP r
A and Immediate Operand CP n
A and Memory Operand
CP (HL) CP (IX+d) CP (IY+4d)
Block Compare
CPD,CPDR,CPI,CPIR

Decrements and Increments
Single Register
DECr INCr DEC IX DEC IY INC
Register Pair
DEC ss INC ss DEC IX DEC IY INC IX DEC 1Y
Memory
DEC HL DEC (IX4d) DEC (IY4d)

Exchanges
DE and HL EX DE,HL

Top of Stack
EX (SP),HL EX (SP),JX EX (SP),IY

195

Input/Output
I/0 To/From A and Port
IN A,(n) OUT (n),A
“I/0 To/From Register and Port
"IN r,(C) OUT (C),r
Block
IND,INDR,INR,INIR,0TDR,O0TIR,0UTD,0UTI
Interrupts
Disable DI
Enable EI

Interrupt Mode
IMO IM1 IM2
Return From Interrupt
RETI RETN

Jumps
Unconditional
JP (HL